27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Kinetics and MR-Based Monitoring of AAV9 Vector Delivery into Cerebrospinal Fluid of Nonhuman Primates

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Here we evaluated the utility of MRI to monitor intrathecal infusions in nonhuman primates. Adeno-associated virus (AAV) spiked with gadoteridol, a gadolinium-based MRI contrast agent, enabled real-time visualization of infusions delivered either via cerebromedullary cistern, lumbar, cerebromedullary and lumbar, or intracerebroventricular infusion. The kinetics of vector clearance from the cerebrospinal fluid (CSF) were analyzed. Our results highlight the value of MRI in optimizing the delivery of infusate into CSF. In particular, MRI revealed differential patterns of infusate distribution depending on the route of delivery. Gadoteridol coverage analysis showed that cerebellomedullary cistern delivery was a reliable and effective route of injection, achieving broad infusate distribution in the brain and spinal cord, and was even greater when combined with lumbar injection. In contrast, intracerebroventricular injection resulted in strong cortical coverage but little spinal distribution. Lumbar injection alone led to the distribution of MRI contrast agent mainly in the spinal cord with little cortical coverage, but this delivery route was unreliable. Similarly, vector clearance analysis showed differences between different routes of delivery. Overall, our data support the value of monitoring CSF injections to dissect different patterns of gadoteridol distribution based on the route of intrathecal administration.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Intracellular transport of recombinant adeno-associated virus vectors.

          Recombinant adeno-associated viral vectors (rAAVs) have been widely used for gene delivery in animal models, and are currently evaluated for human gene therapy after successful clinical trials in the treatment of inherited, degenerative or acquired diseases, such as Leber congenital amaurosis, Parkinson disease or heart failure. However, limitations in vector tropism, such as limited tissue specificity and insufficient transduction efficiencies of particular tissues and cell types, still preclude therapeutic applications in certain tissues. Wild-type adeno-associated viruses (AAVs) are defective viruses that require the presence of a helper virus to complete their life cycle. On the one hand, this unique property makes AAV vectors one of the safest available viral vectors for gene delivery. On the other, it also represents a potential obstacle because rAAV vectors have to overcome several biological barriers in the absence of a helper virus to transduce successfully a cell. Consequently, a better understanding of the cellular roadblocks that limit rAAV gene delivery is crucial and, during the last 15 years, numerous studies resulted in an expanding body of knowledge of the intracellular trafficking pathways of rAAV vectors. This review describes our current understanding of the mechanisms involved in rAAV attachment to target cells, endocytosis, intracellular trafficking, capsid processing, nuclear import and genome release with an emphasis on the most recent discoveries in the field and the emerging strategies used to improve the efficiency of AAV-derived vectors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Intracerebroventricular Delivery as a Safe, Long-Term Route of Drug Administration.

            Intrathecal delivery methods have been used for many decades to treat a broad range of central nervous system disorders. A literature review demonstrated that intracerebroventricular route is an established and well-tolerated method for prolonged central nervous system drug delivery in pediatric and adult populations. Intracerebroventricular devices were present in patients from one to 7156 days. The number of punctures per device ranged from 2 to 280. Noninfectious complication rates per patient (range, 1.0% to 33.0%) were similar to infectious complication rates (0.0% to 27.0%). Clinician experience and training and the use of strict aseptic techniques have been shown to reduce the frequency of complications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evaluation of Intrathecal Routes of Administration for Adeno-Associated Viral Vectors in Large Animals

              Delivery of adeno-associated viral (AAV) vectors into the cerebrospinal fluid (CSF) can achieve gene transfer to cells throughout the brain and spinal cord, potentially making many neurological diseases tractable gene therapy targets. Identifying the optimal route of CSF access for intrathecal AAV delivery will be a critical step in translating this approach to clinical practice. We previously demonstrated that vector injection into the cisterna magna is a safe and effective method for intrathecal AAV delivery in nonhuman primates; however, this procedure is not commonly used in clinical practice. More routine methods of administration into the CSF are now being explored, including intracerebroventricular (ICV) injection and injection through a lumbar puncture. In this study, we compared ICV and intracisternal (IC) AAV administration in dogs. We also evaluated vector administration via lumbar puncture in nonhuman primates, with some animals placed in the Trendelenburg position after injection, a maneuver that has been suggested to improve cranial distribution of vector. In the dog study, ICV and IC vector administration resulted in similarly efficient transduction throughout the brain and spinal cord. However, animals in the ICV cohort developed encephalitis associated with a T-cell response to the transgene product, a phenomenon that was not observed in the IC cohort. In the nonhuman primate study, transduction efficiency was not improved by placing animals in the Trendelenburg position after injection. These findings illustrate important limitations of commonly used methods for CSF access in the context of AAV delivery, and will be important for informing the selection of a route of administration for first-in-human studies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Ther Methods Clin Dev
                Mol Ther Methods Clin Dev
                Molecular Therapy. Methods & Clinical Development
                American Society of Gene & Cell Therapy
                2329-0501
                08 December 2018
                14 June 2019
                08 December 2018
                : 13
                : 47-54
                Affiliations
                [1 ]Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94103, USA
                [2 ]Valley Biosystems, Inc., West Sacramento, CA 95605, USA
                [3 ]Virovek, Inc., Hayward, CA 94541, USA
                Author notes
                []Corresponding author: Krystof S. Bankiewicz, Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, MCB 226, San Francisco, CA 94103-0555, USA. krystof.bankiewicz@ 123456ucsf.edu
                [4]

                These authors contributed equally to this work.

                Article
                S2329-0501(18)30123-2
                10.1016/j.omtm.2018.12.001
                6330508
                30666308
                32e231b1-5c1b-4282-9dbf-105620e051c3
                © 2018 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 29 June 2018
                : 3 December 2018
                Categories
                Article

                gene therapy,aav vector,non-human primates,intrathecal infusion,cisterna magna,lumbar,intracerebroventricular,pharmacokinetics,magnetic resonance imaging,cerebrospinal fluid

                Comments

                Comment on this article