2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of oregano and/or rosemary extracts on growth performance, digestive enzyme activities, cecal bacteria, tight junction proteins, and antioxidants-related genes in heat-stressed broiler chickens

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The study examined the impact of adding oregano extract and/or rosemary to broiler diets to counteract the growth inhibition caused by heat stress ( HS). It also investigated the effects on the activity of digestive enzymes, microbiological composition, and the expression of antioxidant and tight junction-related proteins. Three hundred- and fifty-day-old male broilers, were randomly assigned to 7 treatment groups, with each group comprising 5 replicates, and each replicate containing 10 chicks in a cage. The diets were: 1) a basal diet, 2) a diet supplemented with 50 mg/kg of rosemary, 3) a diet supplemented with 100 mg/kg of rosemary, 4) a diet supplemented with 50 mg/kg of oregano, 5) a diet supplemented with 100 mg/kg of oregano, 6) a combination diet containing 50 mg/kg each of rosemary and oregano, and 7) a combination diet containing 100 mg/kg each of rosemary and oregano. Dietary oregano extract enhanced the growth and feed utilization of heat-stressed birds, especially at a concentration of 50 mg/kg. Moreover, oregano extract improved jejunal protease and amylase activities. The extracts of rosemary and oregano significantly reduced IgG and IgM levels. Dietary 50 mg oregano extract significantly upregulated intestinal integrity-related genes including jejunal CLDNI, ZO-1, ZO-2, and MUC2. Dietary 50 mg oregano extract significantly downregulated hepatic NADPH oxidase 4 ( NOX4) and nitric oxide synthase 2 ( NOS2) expressions. Our results suggest that incorporating oregano leaf extract into the diet at a concentration of 50 mg/kg improves the growth performance of broilers exposed to heat stress. This improvement could be attributed to enhanced gut health and the modulation of genes associated with oxidative stress and tight junction proteins.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: not found
          • Article: not found

          Multiple Range and Multiple F Tests

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitric oxide synthases: regulation and function.

            Nitric oxide (NO), the smallest signalling molecule known, is produced by three isoforms of NO synthase (NOS; EC 1.14.13.39). They all utilize l-arginine and molecular oxygen as substrates and require the cofactors reduced nicotinamide-adenine-dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and (6R-)5,6,7,8-tetrahydrobiopterin (BH(4)). All NOS bind calmodulin and contain haem. Neuronal NOS (nNOS, NOS I) is constitutively expressed in central and peripheral neurons and some other cell types. Its functions include synaptic plasticity in the central nervous system (CNS), central regulation of blood pressure, smooth muscle relaxation, and vasodilatation via peripheral nitrergic nerves. Nitrergic nerves are of particular importance in the relaxation of corpus cavernosum and penile erection. Phosphodiesterase 5 inhibitors (sildenafil, vardenafil, and tadalafil) require at least a residual nNOS activity for their action. Inducible NOS (NOS II) can be expressed in many cell types in response to lipopolysaccharide, cytokines, or other agents. Inducible NOS generates large amounts of NO that have cytostatic effects on parasitic target cells. Inducible NOS contributes to the pathophysiology of inflammatory diseases and septic shock. Endothelial NOS (eNOS, NOS III) is mostly expressed in endothelial cells. It keeps blood vessels dilated, controls blood pressure, and has numerous other vasoprotective and anti-atherosclerotic effects. Many cardiovascular risk factors lead to oxidative stress, eNOS uncoupling, and endothelial dysfunction in the vasculature. Pharmacologically, vascular oxidative stress can be reduced and eNOS functionality restored with renin- and angiotensin-converting enzyme-inhibitors, with angiotensin receptor blockers, and with statins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intestinal barrier function: molecular regulation and disease pathogenesis.

              The intestinal epithelium is a single-cell layer that constitutes the largest and most important barrier against the external environment. It acts as a selectively permeable barrier, permitting the absorption of nutrients, electrolytes, and water while maintaining an effective defense against intraluminal toxins, antigens, and enteric flora. The epithelium maintains its selective barrier function through the formation of complex protein-protein networks that mechanically link adjacent cells and seal the intercellular space. The protein networks connecting epithelial cells form 3 adhesive complexes: desmosomes, adherens junctions, and tight junctions. These complexes consist of transmembrane proteins that interact extracellularly with adjacent cells and intracellularly with adaptor proteins that link to the cytoskeleton. Over the past decade, there has been increasing recognition of an association between disrupted intestinal barrier function and the development of autoimmune and inflammatory diseases. In this review we summarize the evolving understanding of the molecular composition and regulation of intestinal barrier function. We discuss the interactions between innate and adaptive immunity and intestinal epithelial barrier function, as well as the effect of exogenous factors on intestinal barrier function. Finally, we summarize clinical and experimental evidence demonstrating intestinal epithelial barrier dysfunction as a major factor contributing to the predisposition to inflammatory diseases, including food allergy, inflammatory bowel diseases, and celiac disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Poult Sci
                Poult Sci
                Poultry Science
                Elsevier
                0032-5791
                1525-3171
                28 June 2024
                September 2024
                28 June 2024
                : 103
                : 9
                : 103996
                Affiliations
                [* ]Animal Production Department, National Research Centre, Dokki, Giza 12622, Egypt
                []Cell Biology Department, National Research Centre, Dokki, Giza 12622, Egypt
                []Department of Animal and Poultry Production, Damanhour University, Damanhour, Al-Behira, Egypt
                [§ ]Agricultural Microbiology Department, National Research Centre, Dokki, Giza 12622, Egypt
                [# ]Poultry Production Department, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Cairo 11241, Egypt
                [ǁ ]Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, Abu Dhabi, 15551, United Arab Emirates
                Author notes
                [1 ]Corresponding author: elolimy@ 123456uaeu.ac.ae
                Article
                S0032-5791(24)00575-3 103996
                10.1016/j.psj.2024.103996
                11315179
                39024691
                32d9d090-4bf4-4564-9e75-f6030d78b2ad
                © 2024 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 5 May 2024
                : 19 June 2024
                Categories
                METABOLISM AND NUTRITION

                heat stress,rosemary and oregano leaf extract,broiler,tight junction protein,antioxidants-related gene

                Comments

                Comment on this article