1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cell Proteins Interacting with the Human Immunodeficiency Virus in Immunoblotting can be Detected by R5- or X4- Tropic Human Immunodeficiency Virus Particles

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction:

          The present study reported a new immunoblot assay, with revelation by R5- or X4-whole free human immunodeficiency virus (HIV) particles or recombinant gp160.

          Materials and Methods:

          The assay was optimized to identify cell proteins interacting with HIV. Whole cell lysates were prepared from peripheral blood lymphocytes (PBLs), dendritic cells (DC), monocyte-derived macrophage (MDM), and Henrietta Lacks (Hela, wild-type or transfected with DC-specific intracellular adhesion molecule-3-Grabbing Non-Integrin, HeLa) and Human endometrial cells (HEC-1A) lines; HIV particles used were the R5-tropic HIV-1 JRCSF and the X4-tropic HIV-1 NDK.

          Results:

          Experiments with PBL lysates and both viruses demonstrated different bands, including a unique band at 105–117 kDa in addition to nonspecific bands. The 105–117 kDa band migrated at the same level of that observed in controls using total PBL lysate and anti-CD4 mAb for detection and thus likely corresponds to the cluster difference (CD) 4 complex. Blots using lysates of DCs, MDM, HeLa cell line, and HEC-1A cell line allowed identifying several bands that positions were similar to that seen by recombinant gp160 or whole R5- or X4-HIV particles.

          Conclusion:

          Blot of whole lysates of various HIV target cells is recognized by free HIV particles and allows identifying a wide range of HIV-interacting cell proteins. Such optimized assay could be useful to recognize new cellular HIV attachment proteins.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease.

          In addition to CD4, the human immunodeficiency virus (HIV) requires a coreceptor for entry into target cells. The chemokine receptors CXCR4 and CCR5, members of the G protein-coupled receptor superfamily, have been identified as the principal coreceptors for T cell line-tropic and macrophage-tropic HIV-1 isolates, respectively. The updated coreceptor repertoire includes numerous members, mostly chemokine receptors and related orphans. These discoveries provide a new framework for understanding critical features of the basic biology of HIV-1, including the selective tropism of individual viral variants for different CD4+ target cells and the membrane fusion mechanism governing virus entry. The coreceptors also provide molecular perspectives on central puzzles of HIV-1 disease, including the selective transmission of macrophage-tropic variants, the appearance of T cell line-tropic variants in many infected persons during progression to AIDS, and differing susceptibilities of individuals to infection and disease progression. Genetic findings have yielded major insights into the in vivo roles of individual coreceptors and their ligands; of particular importance is the discovery of an inactivating mutation in the CCR5 gene which, in homozygous form, confers strong resistance to HIV-1 infection. Beyond providing new perspectives on fundamental aspects of HIV-1 transmission and pathogenesis, the coreceptors suggest new avenues for developing novel therapeutic and preventative strategies to combat the AIDS epidemic.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry.

            Chemokines are chemotactic cytokines that activate and direct the migration of leukocytes. There are two subfamilies, the CXC and the CC chemokines. We recently found that the CXC-chemokine stromal cell-derived factor-1 (SDF-1) is a highly efficacious lymphocyte chemoattractant. Chemokines act on responsive leukocyte subsets through G-protein-coupled seven-transmembrane receptors, which are also used by distinct strains of HIV-1 as cofactors for viral entry. Laboratory-adapted and some T-cell-line-tropic (T-tropic) primary viruses use the orphan chemokine receptor LESTR/fusin (also known as fusin), whereas macrophage-tropic primary HIV-1 isolates use CCR-5 and CCR-3 (refs 7-11), which are receptors for known CC chemokines. Testing of potential receptors demonstrated that SDF-1 signalled through, and hence 'adopted', the orphan receptor LESTR, which we therefore designate CXC-chemokine receptor-4 (CXCR-4). SDF-1 induced an increase in intracellular free Ca2+ and chemotaxis in CXCR-4-transfected cells. Because SDF-1 is a biological ligand for the HIV-1 entry cofactor LESTR, we tested whether it inhibited HIV-1. SDF-1 inhibited infection by T-tropic HIV-1 of HeLa-CD4 cells, CXCR-4 transfectants, and peripheral blood mononuclear cells (PBMCs), but did not affect CCR-5-mediated infection by macrophage-tropic (M-tropic) and dual-tropic primary HIV-1.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression.

              Following the identification of the C-C chemokines RANTES, MIP-1alpha and MIP-1beta as major human immunodeficiency virus (HIV)-suppressive factors produced by CD8+ T cells, several chemokine receptors were found to serve as membrane co-receptors for primate immunodeficiency lentiretroviruses. The two most widely used co-receptors thus far recognized, CCR5 and CXCR4, are expressed by both activated T lymphocytes and mononuclear phagocytes. CCR5, a specific RANTES, MIP-1alpha and MIP-1 receptor, is used preferentially by non-MT2-tropic HIV-1 and HIV-2 strains and by simian immunodeficiency virus (SIV), whereas CXCR4, a receptor for the C-X-C chemokine SDF-1, is used by MT2-tropic HIV-1 and HIV-2, but not by SIV. Other receptors with a more restricted cellular distribution, such as CCR2b, CCR3 and STRL33, can also function as co-receptors for selected viral isolates. The third variable region (V3) of the gp120 envelope glycoprotein of HIV-1 has been fingered as a critical determinant of the co-receptor choice. Here, we document a consistent pattern of evolution of viral co-receptor usage and sensitivity to chemokine-mediated suppression in a longitudinal follow-up of children with progressive HIV-1 infection. Viral isolates obtained during the asymptomatic stages generally used only CCR5 as a co-receptor and were inhibited by RANTES, MIP-1alpha and MIP-1beta, but not by SDF-1. By contrast, the majority of the isolates derived after the progression of the disease were resistant to C-C chemokines, having acquired the ability to use CXCR4 and, in some cases, CCR3, while gradually losing CCR5 usage. Surprisingly, most of these isolates were also insensitive to SDF-1, even when used in combination with RANTES. An early acquisition of CXCR4 usage predicted a poor prognosis. In children who progressed to AIDS without a shift to CXCR4 usage, all the sequential isolates were CCR5-dependent but showed a reduced sensitivity to C-C chemokines. Discrete changes in the V3 domain of gp120 were associated with the loss of sensitivity to C-C chemokines and the shift in co-receptor usage. These results suggest an adaptive evolution of HIV-1 in vivo, leading to escape from the control of the antiviral C-C chemokines.
                Bookmark

                Author and article information

                Journal
                Int J Appl Basic Med Res
                Int J Appl Basic Med Res
                IJABMR
                International Journal of Applied and Basic Medical Research
                Wolters Kluwer - Medknow (India )
                2229-516X
                2248-9606
                Apr-Jun 2020
                02 April 2020
                : 10
                : 2
                : 81-85
                Affiliations
                [* ] Department of Cell Biology, Faculty of Science, Lebanese University, Beirut, Lebanon
                [1 ] Department of Microbiology, Faculty of Health, Lebanese University, Beirut, Lebanon
                [2 ] Department of Cell Biology, State University of New York, New York, NY, USA
                [3 ] Virology Lab, Georges Pompidou European Hospital, and University of Paris Descartes, Paris, France
                Author notes
                Address for correspondence: Dr. Nadine Nasreddine, Department of Microbiology, Faculty of Health, Lebanese University, Beirut, Lebanon. E-mail: nadinenasrdine@ 123456gmail.com
                Article
                IJABMR-10-81
                10.4103/ijabmr.IJABMR_398_18
                7289202
                32c8cbc5-8735-4584-95be-a7b301444cb1
                Copyright: © 2020 International Journal of Applied and Basic Medical Research

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                : 30 January 2019
                : 27 March 2019
                : 06 January 2020
                Categories
                Original Article

                free human immunodeficiency virus particles,gp160,human immunodeficiency virus,western blot

                Comments

                Comment on this article