29
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Placenta accreta spectrum: pathophysiology and evidence-based anatomy for prenatal ultrasound imaging

      , ,
      American Journal of Obstetrics and Gynecology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Placenta accreta spectrum is a complex obstetric complication associated with high maternal morbidity. It is a relatively new disorder of placentation, and is the consequence of damage to the endometrium-myometrial interface of the uterine wall. When first described 80 years ago, it mainly occurred after manual removal of the placenta, uterine curettage, or endometritis. Superficial damage leads primarily to an abnormally adherent placenta, and is diagnosed as the complete or partial absence of the decidua on histology. Today, the main cause of placenta accreta spectrum is uterine surgery and, in particular, uterine scar secondary to cesarean delivery. In the absence of endometrial reepithelialization of the scar area the trophoblast and villous tissue can invade deeply within the myometrium, including its circulation, and reach the surrounding pelvic organs. The cellular changes in the trophoblast observed in placenta accreta spectrum are probably secondary to the unusual myometrial environment in which it develops, and not a primary defect of trophoblast biology leading to excessive invasion of the myometrium. Placenta accreta spectrum was separated by pathologists into 3 categories: placenta creta when the villi simply adhere to the myometrium, placenta increta when the villi invade the myometrium, and placenta percreta where the villi invade the full thickness of the myometrium. Several prenatal ultrasound signs of placenta accreta spectrum were reported over the last 35 years, principally the disappearance of the normal uteroplacental interface (clear zone), extreme thinning of the underlying myometrium, and vascular changes within the placenta (lacunae) and placental bed (hypervascularity). The pathophysiological basis of these signs is due to permanent damage of the uterine wall as far as the serosa, with placental tissue reaching the deep uterine circulation. Adherent and invasive placentation may coexist in the same placental bed and evolve with advancing gestation. This may explain why no single, or set combination of, ultrasound sign(s) was found to be specific for the depth of abnormal placentation, and accurate for the differential diagnosis between adherent and invasive placentation. Correlation of pathological and clinical findings with prenatal imaging is essential to improve screening, diagnosis, and management of placenta accreta spectrum, and standardized protocols need to be developed.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          Rheological and Physiological Consequences of Conversion of the Maternal Spiral Arteries for Uteroplacental Blood Flow during Human Pregnancy

          Physiological conversion of the maternal spiral arteries is key to a successful human pregnancy. It involves loss of smooth muscle and the elastic lamina from the vessel wall as far as the inner third of the myometrium, and is associated with a 5–10-fold dilation at the vessel mouth. Failure of conversion accompanies common complications of pregnancy, such as early-onset preeclampsia and fetal growth restriction. Here, we model the effects of terminal dilation on inflow of blood into the placental intervillous space at term, using dimensions in the literature derived from three-dimensional reconstructions. We observe that dilation slows the rate of flow from 2 to 3 m/s in the non-dilated part of an artery of 0.4–0.5 mm diameter to approximately 10 cm/s at the 2.5 mm diameter mouth, depending on the exact radius and viscosity. This rate predicts a transit time through the intervillous space of approximately 25 s, which matches observed times closely. The model shows that in the absence of conversion blood will enter the intervillous space as a turbulent jet at rates of 1–2 m/s. We speculate that the high momentum will damage villous architecture, rupturing anchoring villi and creating echogenic cystic lesions as evidenced by ultrasound. The retention of smooth muscle will also increase the risk of spontaneous vasoconstriction and ischaemia–reperfusion injury, generating oxidative stress. Dilation has a surprisingly modest impact on total blood flow, and so we suggest the placental pathology associated with deficient conversion is dominated by rheological consequences rather than chronic hypoxia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Placenta accreta: pathogenesis of a 20th century iatrogenic uterine disease.

            Placenta accreta refers to different grades of abnormal placental attachment to the uterine wall, which are characterised by invasion of trophoblast into the myometrium. Placenta accreta has only been described and studied by pathologists for less than a century. The fact that the first detailed description of a placenta accreta happened within a couple of decades of major changes in the caesarean surgical techniques is highly suggestive of a direct relationship between prior uterine surgery and abnormal placenta adherence. Several concepts have been proposed to explain the abnormal placentation in placenta accreta including a primary defect of the trophoblast function, a secondary basalis defect due to a failure of normal decidualization and more recently an abnormal vascularisation and tissue oxygenation of the scar area. The vast majority of placenta accreta are found in women presenting with a previous history of caesarean section and a placenta praevia. Recent epidemiological studies have also found that the strongest risk factor for placenta praevia is a prior caesarean section suggesting that a failure of decidualization in the area of a previous uterine scar can have an impact on both implantation and placentation. Ultrasound studies of uterine caesarean section scar have shown that large and deep myometrial defects are often associated with absence of re-epithelialisation of the scar area. These findings support the concept of a primary deciduo-myometrium defect in placenta accreta, exposing the myometrium and its vasculature below the junctional zone to the migrating trophoblast. The loss of this normal plane of cleavage and the excessive vascular remodelling of the radial and arcuate arteries can explain the in-vivo findings and the clinical consequence of placenta accreta. Overall these data support the concept that abnormal decidualization and trophoblastic changes of the placental bed in placenta accreta are secondary to the uterine scar and thus entirely iatrogenic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Abnormally invasive placenta-prevalence, risk factors and antenatal suspicion: results from a large population-based pregnancy cohort study in the Nordic countries

              The objective was to investigate prevalence, estimate risk factors, and antenatal suspicion of abnormally invasive placenta (AIP) associated with laparotomy in women in the Nordic countries.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                American Journal of Obstetrics and Gynecology
                American Journal of Obstetrics and Gynecology
                Elsevier BV
                00029378
                January 2018
                January 2018
                : 218
                : 1
                : 75-87
                Article
                10.1016/j.ajog.2017.05.067
                28599899
                32b72de2-dc81-4a62-8d06-e847e8cd767c
                © 2018

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article