1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Directed Differentiation of Human Pluripotent Stem Cells towards Corneal Endothelial-Like Cells under Defined Conditions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The most crucial function of corneal endothelial cells (CEnCs) is to maintain optical transparency by transporting excess fluid out of stroma. Unfortunately, CEnCs are not able to proliferate in vivo in the case of trauma or dystrophy. Visually impaired patients with corneal endothelial deficiencies that are waiting for transplantation due to massive global shortage of cadaveric corneal transplants are in a great need of help. In this study, our goal was to develop a defined, clinically applicable protocol for direct differentiation of CEnCs from human pluripotent stem cells (hPSCs). To produce feeder-free hPSC-CEnCs, we used small molecule induction with transforming growth factor (TGF) beta receptor inhibitor SB431542, GSK-3-specific inhibitor CHIR99021 and retinoic acid to guide differentiation through the neural crest and periocular mesenchyme (POM). Cells were characterized by the morphology and expression of human (h)CEnC markers with immunocytochemistry and RT-qPCR. After one week of induction, we observed the upregulation of POM markers paired-like homeodomain transcription factor 2 (PITX2) and Forkhead box C1 (FOXC1) and polygonal-shaped cells expressing CEnC-associated markers Zona Occludens-1 (ZO-1), sodium-potassium (Na +/K +)-ATPase, CD166, sodium bicarbonate cotransporter 1 (SLC4A4), aquaporin 1 (AQP1) and N-cadherin (NCAD). Furthermore, we showed that retinoic acid induced a dome formation in the cell culture, with a possible indication of fluid transport by the differentiated cells. Thus, we successfully generated CEnC-like cells from hPSCs with a defined, simple and fast differentiation method.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global Survey of Corneal Transplantation and Eye Banking.

            Corneal transplantation restores visual function when visual impairment caused by a corneal disease becomes too severe. It is considered the world's most frequent type of transplantation, but, to our knowledge, there are no exhaustive data allowing measurement of supply and demand, although such data are essential in defining local, national, and global strategies to fight corneal blindness.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin.

              Human embryonic stem cells differentiate spontaneously in vitro into a range of cell types, and they frequently give rise to cells with the properties of extra-embryonic endoderm. We show here that endogenous signaling by bone morphogenetic protein-2 controls the differentiation of embryonic stem cells into this lineage. Treatment of embryonic stem cell cultures with the bone morphogenetic protein antagonist noggin blocks this form of differentiation and induces the appearance of a novel cell type that can give rise to neural precursors. These findings indicate that bone morphogenetic protein-2 controls a key early commitment step in human embryonic stem cell differentiation, and show that the conservation of developmental mechanisms at the cellular level can be exploited in this system--in this case, to provide a facile route for the generation of neural precursors from pluripotent cells.
                Bookmark

                Author and article information

                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                05 February 2021
                February 2021
                : 10
                : 2
                : 331
                Affiliations
                Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland; pyry.gronroos@ 123456tuni.fi (P.G.); tanja.ilmarinen@ 123456tuni.fi (T.I.)
                Author notes
                [* ]Correspondence: heli.skottman@ 123456tuni.fi ; Tel.: +358-503969645
                [†]

                Last shared authorship.

                Author information
                https://orcid.org/0000-0001-5344-4527
                Article
                cells-10-00331
                10.3390/cells10020331
                7915025
                33562615
                3293a652-70f7-4a2c-90d7-9a1e8c28077b
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 December 2020
                : 01 February 2021
                Categories
                Article

                corneal endothelial cells,human pluripotent stem cells,neural crest cells,differentiation,small molecule,retinoic acid

                Comments

                Comment on this article