28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Weed dynamics and conservation agriculture principles: A review

      , , ,
      Field Crops Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references122

          • Record: found
          • Abstract: found
          • Article: not found

          Productivity limits and potentials of the principles of conservation agriculture.

          One of the primary challenges of our time is to feed a growing and more demanding world population with reduced external inputs and minimal environmental impacts, all under more variable and extreme climate conditions in the future. Conservation agriculture represents a set of three crop management principles that has received strong international support to help address this challenge, with recent conservation agriculture efforts focusing on smallholder farming systems in sub-Saharan Africa and South Asia. However, conservation agriculture is highly debated, with respect to both its effects on crop yields and its applicability in different farming contexts. Here we conduct a global meta-analysis using 5,463 paired yield observations from 610 studies to compare no-till, the original and central concept of conservation agriculture, with conventional tillage practices across 48 crops and 63 countries. Overall, our results show that no-till reduces yields, yet this response is variable and under certain conditions no-till can produce equivalent or greater yields than conventional tillage. Importantly, when no-till is combined with the other two conservation agriculture principles of residue retention and crop rotation, its negative impacts are minimized. Moreover, no-till in combination with the other two principles significantly increases rainfed crop productivity in dry climates, suggesting that it may become an important climate-change adaptation strategy for ever-drier regions of the world. However, any expansion of conservation agriculture should be done with caution in these areas, as implementation of the other two principles is often challenging in resource-poor and vulnerable smallholder farming systems, thereby increasing the likelihood of yield losses rather than gains. Although farming systems are multifunctional, and environmental and socio-economic factors need to be considered, our analysis indicates that the potential contribution of no-till to the sustainable intensification of agriculture is more limited than often assumed.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Conservation agriculture and smallholder farming in Africa: The heretics’ view

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of conservation agriculture in sustainable agriculture.

              The paper focuses on conservation agriculture (CA), defined as minimal soil disturbance (no-till, NT) and permanent soil cover (mulch) combined with rotations, as a more sustainable cultivation system for the future. Cultivation and tillage play an important role in agriculture. The benefits of tillage in agriculture are explored before introducing conservation tillage (CT), a practice that was borne out of the American dust bowl of the 1930s. The paper then describes the benefits of CA, a suggested improvement on CT, where NT, mulch and rotations significantly improve soil properties and other biotic factors. The paper concludes that CA is a more sustainable and environmentally friendly management system for cultivating crops. Case studies from the rice-wheat areas of the Indo-Gangetic Plains of South Asia and the irrigated maize-wheat systems of Northwest Mexico are used to describe how CA practices have been used in these two environments to raise production sustainably and profitably. Benefits in terms of greenhouse gas emissions and their effect on global warming are also discussed. The paper concludes that agriculture in the next decade will have to sustainably produce more food from less land through more efficient use of natural resources and with minimal impact on the environment in order to meet growing population demands. Promoting and adopting CA management systems can help meet this goal.
                Bookmark

                Author and article information

                Journal
                Field Crops Research
                Field Crops Research
                Elsevier BV
                03784290
                November 2015
                November 2015
                : 183
                :
                : 56-68
                Article
                10.1016/j.fcr.2015.07.012
                32889ce5-8f57-4cfb-a070-2dcc05bbd7e0
                © 2015
                History

                Comments

                Comment on this article