11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Upstream molecular signaling pathways of p27(Kip1) expression: Effects of 4-hydroxytamoxifen, dexamethasone, and retinoic acids

      research-article
      1 ,
      Cancer Cell International
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          p27(Kip1) is a cyclin-dependent kinase inhibitor that inhibits G1-to-S phase transition of the cell cycle. It is known that a relatively large number of nutritional and chemopreventive anti-cancer agents specifically up-regulate expression of p27 without directly affecting the expression of other G1-to-S phase cell cycle regulatory proteins including p21(Cip1Waf1). However, the upstream molecular signaling pathways of how these agents up-regulate the expression of p27 have not been well characterized. The objective of this study was to identify such pathways in human breast cancer cells in vitro using 4-hydroxytamoxifen, dexamethasone, and various retinoic acids as examples of such anti-cancer agents.

          Results

          Experimental evidence presented in the first half of this report was obtained by transfecting human breast cancer cells in vitro with proximal upstream region of p27 gene-luciferase reporter plasmids. 1) The evidence indicated that 4-hydroxytamoxifen, dexamethasone, and various retinoic acids up-regulated expression of p27 in both estrogen receptor-positive and negative human breast cancer cells in vitro. 2) The degree of up-regulation of p27 expression by these anti-cancer agents in human breast cancer cells in vitro linearly correlated with the degree of inhibition of methylnitrosourea (MNU)-induced rat mammary adenocarcinoma in vivo. 3) Lastly, up-regulation of the expression of p27 was likely due to the activation of translation initiation rather than transcription of p27 gene. The experimental evidence presented in the second half of this report was obtained by a combination of Western immunoblot analysis and transfection analysis. It indicated that 4-hydroxytamoxifen and dexamethasone up-regulated expression of p27 by down-regulating phosphorylation of eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) at Ser65 and this phosphorylation was likely to be mediated by upstream receptor tyrosine kinases/phosphoinositide-3-kinase/Akt/5'-AMP-activated protein kinase/mammalian target of rapamycin (RTKs/PI3K/Akt/AMPK/mTOR) protein kinase signaling pathways. Retinoic acids up-regulated expression of p27 without using either 4E-BP1 or RTKs/PI3K/Akt/AMPK/mTOR protein kinase signaling pathways.

          Conclusions

          4-Hydroxytamoxifen and dexamethasone up-regulated translation initiation of p27 by down-regulating 4E-BP1 phosphorylated at Ser65 and this down-regulation seemed to be mediated by upstream RTKs/PI3K/Akt/AMPK/mTOR protein kinase signaling pathways. Retinoic acids also up-regulated translation initiation of p27, but without using any of these pathways.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: not found
          • Article: not found

          CDK inhibitors: positive and negative regulators of G1-phase progression.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Principles of CDK regulation.

            D Morgan (1995)
            As key regulators of the cell cycle, the cyclin-dependent kinases must be tightly regulated by extra- and intracellular signals. The activity of cyclin-dependent kinases is controlled by four highly conserved biochemical mechanisms, forming a web of regulatory pathways unmatched in its elegance and intricacy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1.

              The Forkhead transcription factors AFX, FKHR and FKHR-L1 are orthologues of DAF-16, a Forkhead factor that regulates longevity in Caenorhabditis elegans. Here we show that overexpression of these Forkhead transcription factors causes growth suppression in a variety of cell lines, including a Ras-transformed cell line and a cell line lacking the tumour suppressor PTEN. Expression of AFX blocks cell-cycle progression at phase G1, independent of functional retinoblastoma protein (pRb) but dependent on the cell-cycle inhibitor p27kip1. Indeed, AFX transcriptionally activates p27kip1, resulting in increased protein levels. We conclude that AFX-like proteins are involved in cell-cycle regulation and that inactivation of these proteins is an important step in oncogenic transformation.
                Bookmark

                Author and article information

                Journal
                Cancer Cell Int
                Cancer Cell International
                BioMed Central
                1475-2867
                2010
                19 February 2010
                : 10
                : 3
                Affiliations
                [1 ]Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
                Article
                1475-2867-10-3
                10.1186/1475-2867-10-3
                2841156
                20170512
                3264eada-56a2-4e7a-8284-e1f0bf844528
                Copyright ©2010 Eto; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 October 2009
                : 19 February 2010
                Categories
                Primary research

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article