6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Role of Macrophages in Pregnancy and Related Complications

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Macrophages (MФs) are the leukocytes produced from differentiation of monocytes and are located in almost all tissues of human body. They are involved in various processes, such as phagocytosis, innate and adaptive immunity, proinflammatory (M1) and anti-inflammatory (M2) activity, depending on the tissue microenvironment. They play a crucial role in pregnancy, and their dysfunction or alteration of polarity is involved in pregnancy disorders, like preeclampsia, recurrent spontaneous abortion, infertility, intrauterine growth restriction, and preterm labor. About 50–60% of decidual leukocytes are natural killer (NK) cells followed by MФs (the second largest population). MФs are actively involved in trophoblast invasion, tissue and vascular remodeling during early pregnancy, besides their role as major antigen-presenting cells in the decidua. These cells have different phenotypes and polarities in different stages of pregnancy. They have also been observed to enhance tumor growth by their anti-inflammatory activity (M2 type) and prevent immunogenic rejection. Targeted alteration of polarity (M1–M2 or vice versa) could be a major focus in the future treatment of pregnancy complications. This review is focused on the role of MФs in pregnancy, their involvement in pregnancy disorders, and decidual MФs as possible therapeutic targets for the treatment of pregnancy complications.

          Related collections

          Most cited references172

          • Record: found
          • Abstract: found
          • Article: not found

          The chemokine system in diverse forms of macrophage activation and polarization.

          Plasticity and functional polarization are hallmarks of the mononuclear phagocyte system. Here we review emerging key properties of different forms of macrophage activation and polarization (M1, M2a, M2b, M2c), which represent extremes of a continuum. In particular, recent evidence suggests that differential modulation of the chemokine system integrates polarized macrophages in pathways of resistance to, or promotion of, microbial pathogens and tumors, or immunoregulation, tissue repair and remodeling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            M-1/M-2 Macrophages and the Th1/Th2 Paradigm

            Evidence is provided that macrophages can make M-1 or M-2 responses. The concept of M-1/M-2 fomented from observations that macrophages from prototypical Th1 strains (C57BL/6, B10D2) are more easily activated to produce NO with either IFN-gamma or LPS than macrophages from Th2 strains (BALB/c, DBA/2). In marked contrast, LPS stimulates Th2, but not Th1, macrophages to increase arginine metabolism to ornithine. Thus, M-1/M-2 does not simply describe activated or unactivated macrophages, but cells expressing distinct metabolic programs. Because NO inhibits cell division, while ornithine can stimulate cell division (via polyamines), these results also indicate that M-1 and M-2 responses can influence inflammatory reactions in opposite ways. Macrophage TGF-beta1, which inhibits inducible NO synthase and stimulates arginase, appears to play an important role in regulating the balance between M-1 and M-2. M-1/M-2 phenotypes are independent of T or B lymphocytes because C57BL/6 and BALB/c NUDE or SCID macrophages also exhibit M-1/M-2. Indeed, M-1/M-2 proclivities are magnified in NUDE and SCID mice. Finally, C57BL/6 SCID macrophages cause CB6F1 lymphocytes to increase IFN-gamma production, while BALB/c SCID macrophages increase TGF-beta production. Together, the results indicate that M-1- or M-2-dominant macrophage responses can influence whether Th1/Th2 or other types of inflammatory responses occur.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alternative activation of macrophages.

              The classical pathway of interferon-gamma-dependent activation of macrophages by T helper 1 (T(H)1)-type responses is a well-established feature of cellular immunity to infection with intracellular pathogens, such as Mycobacterium tuberculosis and HIV. The concept of an alternative pathway of macrophage activation by the T(H)2-type cytokines interleukin-4 (IL-4) and IL-13 has gained credence in the past decade, to account for a distinctive macrophage phenotype that is consistent with a different role in humoral immunity and repair. In this review, I assess the evidence in favour of alternative macrophage activation in the light of macrophage heterogeneity, and define its limits and relevance to a range of immune and inflammatory conditions.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Archivum Immunologiae et Therapiae Experimentalis
                Arch. Immunol. Ther. Exp.
                Springer Science and Business Media LLC
                0004-069X
                1661-4917
                October 2019
                July 8 2019
                October 2019
                : 67
                : 5
                : 295-309
                Article
                10.1007/s00005-019-00552-7
                7140981
                31286151
                325bbaa0-305f-490b-96ce-36943d76ddc2
                © 2019

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article