6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d4669083e261">Hyperbranched polyethyleneimine functionalized silica (PEI-SiO2) nanoparticles with considerable hydrophilicity were synthesized and incorporated into a polysulfone (PSF)/dimethylacetamide (DMA)/polyvinylpyrrolidone (PVP) membrane casting solution in five different ratios to fabricate PEI-SiO2/PSF nanocomposite membranes using nonsolvent-induced phase separation. The hydrophilic PEI-SiO2 nanoparticles were characterized by TEM, FTIR, TGA, and XPS analyses. Morphology, water contact angles, mean pore sizes, overall porosity, tensile strengths, water flux, antifouling and the dye separation performances of the PEI-SiO2/PSF membranes were also studied. The PEI-SiO2 nanoparticles were uniformly dispersed in the PSF-based membranes, where a fall in the water contact angle was observed from 65.4° to 49.7° by addition of 2 wt% nanoparticles. The fouling resistance parameters of the PEI-SiO2/PSF membranes were declined with an increase in the nanoparticle concentration, suggesting the superior hydrophilic nature of the PEI-SiO2 nanoparticles. The permeability of the nanocomposite membranes was increased from 38.5 to 70 L m-2 h-1 bar-1 by incorporation of 2 wt% PEI-SiO2. Finally, improvements were observed in the flux recovery ratio (95.8%), Reactive Green 19 dye rejection (99.6%) and tensile strengths of the PEI-SiO2/PSF membranes over the neat PSF and SiO2/PSF membranes, which were used as controls. The results of this study demonstrate the promising application of PEI-SiO2 nanoparticles in improving the separation and antifouling performances of the PSF membranes for water purification. </p>

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Removal of heavy metal ions from wastewaters: a review.

          Heavy metal pollution has become one of the most serious environmental problems today. The treatment of heavy metals is of special concern due to their recalcitrance and persistence in the environment. In recent years, various methods for heavy metal removal from wastewater have been extensively studied. This paper reviews the current methods that have been used to treat heavy metal wastewater and evaluates these techniques. These technologies include chemical precipitation, ion-exchange, adsorption, membrane filtration, coagulation-flocculation, flotation and electrochemical methods. About 185 published studies (1988-2010) are reviewed in this paper. It is evident from the literature survey articles that ion-exchange, adsorption and membrane filtration are the most frequently studied for the treatment of heavy metal wastewater. Copyright © 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Surface modifications for antifouling membranes.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Materials for next-generation molecularly selective synthetic membranes

              Liquid and gas purification using membrane materials permits a wide range of critical industrial processes, and here it is discussed how they might achieve molecular selectivity.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Chemosphere
                Chemosphere
                Elsevier BV
                00456535
                March 2022
                March 2022
                : 290
                : 133363
                Article
                10.1016/j.chemosphere.2021.133363
                34929269
                3254bb0a-50d4-49c3-a0d2-e93bc98be774
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article