13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lymph node myeloid sarcoma with TP53‑associated myelodysplastic syndrome: A case report 

      case-report
      ,
      Oncology Letters
      D.A. Spandidos
      myeloid sarcoma, myelodysplastic syndrome, TP53, fever, lymph node

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Myeloid sarcoma (MS) is a rare extramedullary tumor mass that carries a high risk of progression to acute myeloid leukemia (AML), and patients with MS are commonly treated with the AML regimen. However, MS is frequently misdiagnosed due to its lack of clinical specificity. Patients with MS who harbor tumor protein p53 (TP53) mutations and complex karyotypes are considered to have a poorer prognosis. The present study reports a case of lymph node MS with TP53 (V173G)-related myelodysplastic syndrome (MDS). The mass was first considered to be a lymphoma and treated as such. However, following immunohistochemical analysis, which revealed cells positive for CD43, myeloperoxidase and CD117, the patient was later diagnosed with MS combined with MDS. The patient went into complete remission after the first cycle of chemotherapy, and showed a decrease in platelet, red blood cell and white blood cell counts following the second cycle of chemotherapy. After the third chemotherapy, agranulocytosis occurred, leading to refractory pneumonia and eventually death due to respiratory failure. MS with TP53-related MDS has a low incidence rate, a poor prognosis and a short survival time. The clinical manifestations of MS are non-specific and easy to misdiagnose, leading to delayed diagnosis and treatment, and ultimately worsening the prognosis of the patients. Therefore, a lymph node biopsy should be performed as soon as possible for patients with lymph node enlargement, and early treatment should be carried out to prolong the survival period.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia.

          The World Health Organization (WHO) classification of tumors of the hematopoietic and lymphoid tissues was last updated in 2008. Since then, there have been numerous advances in the identification of unique biomarkers associated with some myeloid neoplasms and acute leukemias, largely derived from gene expression analysis and next-generation sequencing that can significantly improve the diagnostic criteria as well as the prognostic relevance of entities currently included in the WHO classification and that also suggest new entities that should be added. Therefore, there is a clear need for a revision to the current classification. The revisions to the categories of myeloid neoplasms and acute leukemia will be published in a monograph in 2016 and reflect a consensus of opinion of hematopathologists, hematologists, oncologists, and geneticists. The 2016 edition represents a revision of the prior classification rather than an entirely new classification and attempts to incorporate new clinical, prognostic, morphologic, immunophenotypic, and genetic data that have emerged since the last edition. The major changes in the classification and their rationale are presented here.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TP53 mutations in human cancers: origins, consequences, and clinical use.

            Somatic mutations in the TP53 gene are one of the most frequent alterations in human cancers, and germline mutations are the underlying cause of Li-Fraumeni syndrome, which predisposes to a wide spectrum of early-onset cancers. Most mutations are single-base substitutions distributed throughout the coding sequence. Their diverse types and positions may inform on the nature of mutagenic mechanisms involved in cancer etiology. TP53 mutations are also potential prognostic and predictive markers, as well as targets for pharmacological intervention. All mutations found in human cancers are compiled in the IARC TP53 Database (http://www-p53.iarc.fr/). A human TP53 knockin mouse model (Hupki mouse) provides an experimental model to study mutagenesis in the context of a human TP53 sequence. Here, we summarize current knowledge on TP53 gene variations observed in human cancers and populations, and current clinical applications derived from this knowledge.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study.

              We report a proof-of-mechanism study of RG7112, a small-molecule MDM2 antagonist, in patients with chemotherapy-naive primary or relapsed well-differentiated or dedifferentiated MDM2-amplified liposarcoma who were eligible for resection. Patients with well-differentiated or dedifferentiated liposarcoma were enrolled at four centres in France. Patients received up to three 28-day neoadjuvant treatment cycles of RG7112 1440 mg/m(2) per day for 10 days. If a patient progressed at any point after the first cycle, the lesion was resected or, if unresectable, an end-of-study biopsy was done. The primary endpoint was to assess markers of RG7112-dependent MDM2 inhibition and P53 pathway activation (P53, P21, MDM2, Ki-67, macrophage inhibitory cytokine-1 [MIC-1], and apoptosis). All analyses were per protocol. This trial is registered with EudraCT, number 2009-015522-10. Between June 3, and Dec 14, 2010, 20 patients were enrolled and completed pretreatment and day 8 biopsies. 18 of 20 patients had TP53 wild-type tumours and two carried missense TP53 mutations. 14 of 17 assessed patients had MDM2 gene amplification. Compared with baseline, P53 and P21 concentrations, assessed by immunohistochemistry, had increased by a median of 4·86 times (IQR 4·38-7·97; p=0·0001) and 3·48 times (2·05-4·09; p=0·0001), respectively, at day 8 (give or take 2 days). At the same timepoint, relative MDM2 mRNA expression had increased by a median of 3·03 times (1·23-4·93; p=0·003) that at baseline. The median change from baseline for Ki-67-positive tumour cells was -5·05% (IQR -12·55 to 0·05; p=0·01). Drug exposure correlated with blood concentrations of MIC-1 (p<0·0001) and haematological toxicity. One patient had a confirmed partial response and 14 had stable disease. All patients experienced at least one adverse event, mostly nausea (14 patients), vomiting (11 patients), asthenia (nine patients), diarrhoea (nine patients), and thrombocytopenia (eight patients). There were 12 serious adverse events in eight patients, the most common of which were neutropenia (six patients) and thrombocytopenia (three patients). MDM2 inhibition activates the P53 pathway and decreases cell proliferation in MDM2-amplified liposarcoma. This study suggests that it is feasible to undertake neoadjuvant biopsy-driven biomarker studies in liposarcoma. F Hoffmann-La Roche. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Oncol Lett
                Oncol Lett
                OL
                Oncology Letters
                D.A. Spandidos
                1792-1074
                1792-1082
                July 2024
                15 May 2024
                15 May 2024
                : 28
                : 1
                : 324
                Affiliations
                Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
                Author notes
                Correspondence to: Dr Shu Deng, Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Street, Shangcheng, Hangzhou, Zhejiang 310006, P.R. China, E-mail: dengshu918163.com ypingfly@ 123456126.com
                Article
                OL-28-1-14458
                10.3892/ol.2024.14458
                11130743
                38807682
                325486c6-1f83-4225-8fc0-9464c49fe7bf
                Copyright: © 2024 Mao and Deng.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 21 November 2023
                : 09 April 2024
                Funding
                Funding: No funding was received.
                Categories
                Case Report

                Oncology & Radiotherapy
                myeloid sarcoma,myelodysplastic syndrome,tp53,fever,lymph node
                Oncology & Radiotherapy
                myeloid sarcoma, myelodysplastic syndrome, tp53, fever, lymph node

                Comments

                Comment on this article