7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of adaptin protein complexes in intracellular trafficking and their impact on diseases

      review-article
      , ,
      Bioengineered
      Taylor & Francis
      Adaptin protein, clathrin, cargo protein, intracellular trafficking, cellular pathology, virus infection, cancer

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Adaptin proteins (APs) play a crucial role in intracellular cell trafficking. The ‘classical’ role of APs is carried out by AP1‒3, which bind to clathrin, cargo, and accessory proteins. Accordingly, AP1–3 are crucial for both vesicle formation and sorting. All APs consist of four subunits that are indispensable for their functions. In fact, based on studies using cells, model organism knockdown/knock-out, and human variants, each subunit plays crucial roles and contributes to the specificity of each AP. These studies also revealed that the sorting and intracellular trafficking function of AP can exert varying effects on pathology by controlling features such as cell development, signal transduction related to the apoptosis and proliferation pathways in cancer cells, organelle integrity, receptor presentation, and viral infection. Although the roles and functions of AP1‒3 are relatively well studied, the functions of the less abundant and more recently identified APs, AP4 and AP5, are still to be investigated. Further studies on these APs may enable a better understanding and targeting of specific diseases.

          APs known or suggested locations and functions.

          GRAPHICAL ABSTRACT

          Related collections

          Most cited references283

          • Record: found
          • Abstract: found
          • Article: not found

          Signals for sorting of transmembrane proteins to endosomes and lysosomes.

          Sorting of transmembrane proteins to endosomes and lysosomes is mediated by signals present within the cytosolic domains of the proteins. Most signals consist of short, linear sequences of amino acid residues. Some signals are referred to as tyrosine-based sorting signals and conform to the NPXY or YXXO consensus motifs. Other signals known as dileucine-based signals fit [DE]XXXL[LI] or DXXLL consensus motifs. All of these signals are recognized by components of protein coats peripherally associated with the cytosolic face of membranes. YXXO and [DE]XXXL[LI] signals are recognized with characteristic fine specificity by the adaptor protein (AP) complexes AP-1, AP-2, AP-3, and AP-4, whereas DXXLL signals are recognized by another family of adaptors known as GGAs. Several proteins, including clathrin, AP-2, and Dab2, have been proposed to function as recognition proteins for NPXY signals. YXXO and DXXLL signals bind in an extended conformation to the mu2 subunit of AP-2 and the VHS domain of the GGAs, respectively. Phosphorylation events regulate signal recognition. In addition to peptide motifs, ubiquitination of cytosolic lysine residues also serves as a signal for sorting at various stages of the endosomal-lysosomal system. Conjugated ubiquitin is recognized by UIM, UBA, or UBC domains present within many components of the internalization and lysosomal targeting machinery. This complex array of signals and recognition proteins ensures the dynamic but accurate distribution of transmembrane proteins to different compartments of the endosomal-lysosomal system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endocytic mechanisms for targeted drug delivery.

            Advances in the delivery of targeted drug systems have evolved to enable highly regulated site specific localization to subcellular organelles. Targeting therapeutics to individual intracellular compartments has resulted in benefits to therapies associated with these unique organelles. Endocytosis, a mechanism common to all cells in the body, internalizes macromolecules and retains them in transport vesicles which traffic along the endolysosomal scaffold. An array of vesicular internalization mechanisms exist, therefore understanding the key players specific to each pathway has allowed researchers to bioengineer macromolecular complexes for highly specialized delivery. Membrane specific receptors most frequently enter the cell through endocytosis following the binding of a high affinity ligand. High affinity ligands interact with membrane receptors, internalize in membrane bound vesicles, and traffic through cells in different manners to allow for accumulation in early endosomal fractions or lysosomally associated fractions. Although most drug delivery complexes aim to avoid lysosomal degradation, more recent studies have shown the clinical utility in directed protein delivery to this environment for the enzymatic release of therapeutics. Targeting nanomedicine complexes to the endolysosomal pathway has serious potential for improving drug delivery for the treatment of lysosomal storage diseases, cancer, and Alzheimer's disease. Although several issues remain for receptor specific targeting, current work is investigating a synthetic receptor approach for high affinity binding of targeted macromolecules.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer’s disease susceptibility

              We use deep sequencing to identify sources of variation in mRNA splicing in the dorsolateral prefrontal cortex (DLFPC) of 450 subjects from two aging cohorts. Hundreds of aberrant pre-mRNA splicing events are reproducibly associated with Alzheimer’s disease. We also generate a catalog of splicing quantitative trait loci (sQTL) effects: splicing of 3,006 genes is influenced by genetic variation. We report that altered splicing is the mechanism for the effects of the PICALM, CLU, and PTK2B susceptibility alleles. Further, we performed a transcriptome-wide association study and identified 21 genes with significant associations to Alzheimer’s disease, many of which are found in known loci, but 8 are in novel loci. This highlights the convergence of old and new Alzheimer’s disease genes in autophagy-lysosomal-related pathways. Overall, this study of the aging brain’s transcriptome provides evidence that dysregulation of mRNA splicing is a feature of Alzheimer’s disease and is, in some cases, genetically driven.
                Bookmark

                Author and article information

                Journal
                Bioengineered
                Bioengineered
                Bioengineered
                Taylor & Francis
                2165-5979
                2165-5987
                21 October 2021
                2021
                21 October 2021
                : 12
                : 1
                : 8259-8278
                Affiliations
                [0001]Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University; , Seoul, Republic of Korea
                Author notes
                CONTACT Jae-Wook Oh ohjw@ 123456konkuk.ac.kr Department of Stem Cell and Regenerative Biotechnology, Kit, Konkuk University; , 120 Neungdong-ro, Gwangjn-gu, Seoul 05029, Korea
                Author information
                https://orcid.org/0000-0003-3434-658X
                https://orcid.org/0000-0003-2439-0499
                Article
                1982846
                10.1080/21655979.2021.1982846
                8806629
                34565296
                3243ddaa-b39f-4c71-86a9-44f37b324897
                © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 1, Tables: 2, References: 283, Pages: 20
                Categories
                Review
                Reviews

                Biomedical engineering
                adaptin protein,clathrin,cargo protein,intracellular trafficking,cellular pathology,virus infection,cancer

                Comments

                Comment on this article