13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references246

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air.

          Polycyclic aromatic hydrocarbons (PAHs) are formed during incomplete combustion. Domestic wood burning and road traffic are the major sources of PAHs in Sweden. In Stockholm, the sum of 14 different PAHs is 100-200 ng/m(3) at the street-level site, the most abundant being phenanthrene. Benzo[a]pyrene (B[a]P) varies between 1 and 2 ng/m(3). Exposure to PAH-containing substances increases the risk of cancer in humans. The carcinogenicity of PAHs is associated with the complexity of the molecule, i.e., increasing number of benzenoid rings, and with metabolic activation to reactive diol epoxide intermediates and their subsequent covalent binding to critical targets in DNA. B[a]P is the main indicator of carcinogenic PAHs. Fluoranthene is an important volatile PAH because it occurs at high concentrations in ambient air and because it is an experimental carcinogen in certain test systems. Thus, fluoranthene is suggested as a complementary indicator to B[a]P. The most carcinogenic PAH identified, dibenzo[a,l]pyrene, is also suggested as an indicator, although it occurs at very low concentrations. Quantitative cancer risk estimates of PAHs as air pollutants are very uncertain because of the lack of useful, good-quality data. According to the World Health Organization Air Quality Guidelines for Europe, the unit risk is 9 X 10(-5) per ng/m(3) of B[a]P as indicator of the total PAH content, namely, lifetime exposure to 0.1 ng/m(3) would theoretically lead to one extra cancer case in 100,000 exposed individuals. This concentration of 0.1 ng/m(3) of B[a]P is suggested as a health-based guideline. Because the carcinogenic potency of fluoranthene has been estimated to be approximately 20 times less than that of B[a]P, a tentative guideline value of 2 ng/m(3) is suggested for fluoranthene. Other significant PAHs are phenanthrene, methylated phenanthrenes/anthracenes and pyrene (high air concentrations), and large-molecule PAHs such as dibenz[a,h]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, and indeno[1,2,3-cd]pyrene (high carcinogenicity). Additional source-specific indicators are benzo[ghi]perylene for gasoline vehicles, retene for wood combustion, and dibenzothiophene and benzonaphthothiophene for sulfur-containing fuels.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.).

            It has been speculated that marine microplastics may cause negative effects on benthic marine organisms and increase bioaccumulation of persistent organic pollutants (POPs). Here, we provide the first controlled study of plastic effects on benthic organisms including transfer of POPs. The effects of polystyrene (PS) microplastic on survival, activity, and bodyweight, as well as the transfer of 19 polychlorinated biphenyls (PCBs), were assessed in bioassays with Arenicola marina (L.). PS was pre-equilibrated in natively contaminated sediment. A positive relation was observed between microplastic concentration in the sediment and both uptake of plastic particles and weight loss by A. marina. Furthermore, a reduction in feeding activity was observed at a PS dose of 7.4% dry weight. A low PS dose of 0.074% increased bioaccumulation of PCBs by a factor of 1.1-3.6, an effect that was significant for ΣPCBs and several individual congeners. At higher doses, bioaccumulation decreased compared to the low dose, which however, was only significant for PCB105. PS had statistically significant effects on the organisms' fitness and bioaccumulation, but the magnitude of the effects was not high. This may be different for sites with different plastic concentrations, or plastics with a higher affinity for POPs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Microbial life at high salt concentrations: phylogenetic and metabolic diversity

              Halophiles are found in all three domains of life. Within the Bacteria we know halophiles within the phyla Cyanobacteria, Proteobacteria, Firmicutes, Actinobacteria, Spirochaetes, and Bacteroidetes. Within the Archaea the most salt-requiring microorganisms are found in the class Halobacteria. Halobacterium and most of its relatives require over 100–150 g/l salt for growth and structural stability. Also within the order Methanococci we encounter halophilic species. Halophiles and non-halophilic relatives are often found together in the phylogenetic tree, and many genera, families and orders have representatives with greatly different salt requirement and tolerance. A few phylogenetically coherent groups consist of halophiles only: the order Halobacteriales, family Halobacteriaceae (Euryarchaeota) and the anaerobic fermentative bacteria of the order Halanaerobiales (Firmicutes). The family Halomonadaceae (Gammaproteobacteria) almost exclusively contains halophiles. Halophilic microorganisms use two strategies to balance their cytoplasm osmotically with their medium. The first involves accumulation of molar concentrations of KCl. This strategy requires adaptation of the intracellular enzymatic machinery, as proteins should maintain their proper conformation and activity at near-saturating salt concentrations. The proteome of such organisms is highly acidic, and most proteins denature when suspended in low salt. Such microorganisms generally cannot survive in low salt media. The second strategy is to exclude salt from the cytoplasm and to synthesize and/or accumulate organic 'compatible' solutes that do not interfere with enzymatic activity. Few adaptations of the cells' proteome are needed, and organisms using the 'organic-solutes-in strategy' often adapt to a surprisingly broad salt concentration range. Most halophilic Bacteria, but also the halophilic methanogenic Archaea use such organic solutes. A variety of such solutes are known, including glycine betaine, ectoine and other amino acid derivatives, sugars and sugar alcohols. The 'high-salt-in strategy' is not limited to the Halobacteriaceae. The Halanaerobiales (Firmicutes) also accumulate salt rather than organic solutes. A third, phylogenetically unrelated organism accumulates KCl: the red extremely halophilic Salinibacter (Bacteroidetes), recently isolated from saltern crystallizer brines. Analysis of its genome showed many points of resemblance with the Halobacteriaceae, probably resulting from extensive horizontal gene transfer. The case of Salinibacter shows that more unusual types of halophiles may be waiting to be discovered.
                Bookmark

                Author and article information

                Journal
                World Journal of Microbiology and Biotechnology
                World J Microbiol Biotechnol
                Springer Science and Business Media LLC
                0959-3993
                1573-0972
                August 2016
                June 25 2016
                August 2016
                : 32
                : 8
                Article
                10.1007/s11274-016-2081-9
                27344438
                3241d372-24e1-4190-be74-3f2188152873
                © 2016

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article