3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Thyrotropin, but Not Thyroid-Stimulating Antibodies, Induces Biphasic Regulation of Gene Expression in Human Thyrocytes

      1 , 1 , 2 , 3 , 1 , 1
      Thyroid
      Mary Ann Liebert Inc

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Thyrotropin (TSH) and thyroid-stimulating antibodies (TSAbs) activate TSH receptor (TSHR) signaling by binding to its extracellular domain. TSHR signaling has been studied extensively in animal thyrocytes and in engineered cell lines, and differences in signaling have been observed in different cell systems. We, therefore, decided to characterize and compare TSHR signaling mediated by TSH and monoclonal TSAbs in human thyrocytes in primary culture. Methods: We used quantitative reverse transcription-polymerase chain reaction to measure mRNA levels of thyroid-specific genes thyroglobulin (TG), thyroperoxidase (TPO), iodothyronine deiodinase type 2 (DIO2), sodium-iodide symporter (NIS) , and TSHR after stimulation by TSH or two monoclonal TSAbs, KSAb1 and M22. We also compared secreted TG protein after TSHR activation by TSH and TSAbs using an enzyme-linked immunosorbent assay. TSHR cell surface expression was determined using fluorescence activated cell sorting (FACS). Results: We found that TSH at low doses increases and at high doses (>1 mU/mL) decreases levels of gene expression for TSHR, TG, TPO, NIS , and DIO2. The biphasic effect of TSH on signaling was not caused by downregulation of cell surface TSHRs. This bell-shaped biphasic dose–response curve has been termed an inverted U-shaped dose–response curve (IUDRC). An IUDRC was also found for TSH-induced regulation of TG secretion. In contrast, KSAb1- and M22-induced regulation of TSHR, TG, TPO, NIS , and DIO2 gene expression, and secreted TG followed a monotonic dose–response curve that plateaus at high doses of activating antibody. Conclusions: Our data demonstrate that the physiological activation of TSHRs by TSH in primary cultures of human thyrocytes is characterized by a regulatory mechanism that may inhibit thyrocyte overstimulation. In contrast, TSAbs do not exhibit biphasic regulation. Although KSAb1 and M22 may not be representative of all TSAbs found in patients with Graves' disease, we suggest that persistent robust stimulation of TSHRs by TSAbs, unrelieved by a decrease at high TSAb levels, fosters chronic stimulation of thyrocytes in Graves' hyperthyroidism.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Hormetic mechanisms.

          This article provides the first extensive documentation of mechanisms of hormetic dose/concentration responses. The mechanisms selected were principally those mediated via receptor and/or cell signaling pathways. Mechanisms are reported for greater than 100 agents affecting nearly 400 dose/concentration responses from a wide range of chemical classes, affecting a broad range of cell types and endpoints. Regardless of the model (i.e. in vitro or in vivo), inducing agent, endpoint, or receptor/cell signaling pathway mediated mechanism, the quantitative features of the hormetic dose/concentration responses are similar, suggesting that the magnitude of the response is a measure of biological plasticity, within a broad range of biological contexts. These findings represent an important advance in the understanding of the hormetic dose/concentration response, its generalizability and potential biomedical applications, including drug discovery/efficacy assessment and the risk assessment process.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models.

            TSH via cAMP, and various growth factors, in cooperation with insulin or IGF-I stimulate cell cycle progression and proliferation in various thyrocyte culture systems, including rat thyroid cell lines (FRTL-5, WRT, PC Cl3) and primary cultures of rat, dog, sheep and human thyroid. The available data on cell signaling cascades, cell cycle kinetics, and cell cycle-regulatory proteins are thoroughly and critically reviewed in these experimental systems. In most FRTL-5 cells, TSH (cAMP) merely acts as a priming/competence factor amplifying PI3K and MAPK pathway activation and DNA synthesis elicited by insulin/IGF-I. In WRT cells, TSH and insulin/IGF-I can independently activate Ras and PI3K pathways and DNA synthesis. In dog thyroid primary cultures, TSH (cAMP) does not activate Ras and PI3K, and cAMP must be continuously elevated by TSH to directly control the progression through G(1) phase. This effect is exerted, at least in part, via the cAMP-dependent activation of the required cyclin D3, itself synthesized in response to insulin/IGF-I. This and other discrepancies show that the mechanistic logics of cell cycle stimulation by cAMP profoundly diverge in these different in vitro models of the same cell. Therefore, although these different thyrocyte systems constitute interesting models of the wide diversity of possible mechanisms of cAMP-dependent proliferation in various cell types, extrapolation of in vitro mechanistic data to TSH-dependent goitrogenesis in man can only be accepted in the cases where independent validation is provided.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Preconditioning is hormesis part I: Documentation, dose-response features and mechanistic foundations.

              This article provides the first extensive documentation of the dose response features of pre- and postconditioning. Pre- and postconditioning studies with rigorous study designs, using multiple doses/concentrations along with refined dose/concentration spacing strategies, often display hormetic dose/concentration response relationships with considerable generality across biological model, inducing (i.e., conditioning) agent, challenging dose treatment, endpoint, and mechanism. Pre- and postconditioning hormesis dose/concentration-response relationships are reported for 154 diverse conditioning agents, affecting more than 550 dose/concentration responses, across a broad range of biological models and endpoints. The quantitative features of the pre- and postconditioning-induced protective responses are modest, typically being 30-60% greater than control values at maximum, findings that are consistent with a large body (>10,000) of hormetic dose/concentration responses not related to pre- and postconditioning. Regardless of the biological model, inducing agent, endpoint or mechanism, the quantitative features of hormetic dose/concentration responses are similar, suggesting that the magnitude of response is a measure of biological plasticity. This paper also provides the first documentation that hormetic effects account for preconditioning induced early (1-3h) and delayed (12-72h) windows of protection. These findings indicate that pre- and postconditioning are specific types of hormesis.
                Bookmark

                Author and article information

                Journal
                Thyroid
                Thyroid
                Mary Ann Liebert Inc
                1050-7256
                1557-9077
                February 01 2020
                February 01 2020
                : 30
                : 2
                : 270-276
                Affiliations
                [1 ]Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, Maryland.
                [2 ]Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
                [3 ]Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.
                Article
                10.1089/thy.2019.0418
                7047096
                31805824
                323545ed-c776-4815-b36a-817aa417c953
                © 2020

                https://www.liebertpub.com/nv/resources-tools/text-and-data-mining-policy/121/

                History

                Comments

                Comment on this article