35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products

      , , , , , ,
      Frontiers in Energy Research
      Frontiers Media SA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references189

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review

          Lignocellulosic feedstock materials are the most abundant renewable bioresource material available on earth. It is primarily composed of cellulose, hemicellulose, and lignin, which are strongly associated with each other. Pretreatment processes are mainly involved in effective separation of these complex interlinked fractions and increase the accessibility of each individual component, thereby becoming an essential step in a broad range of applications particularly for biomass valorization. However, a major hurdle is the removal of sturdy and rugged lignin component which is highly resistant to solubilization and is also a major inhibitor for hydrolysis of cellulose and hemicellulose. Moreover, other factors such as lignin content, crystalline, and rigid nature of cellulose, production of post-pretreatment inhibitory products and size of feed stock particle limit the digestibility of lignocellulosic biomass. This has led to extensive research in the development of various pretreatment processes. The major pretreatment methods include physical, chemical, and biological approaches. The selection of pretreatment process depends exclusively on the application. As compared to the conventional single pretreatment process, integrated processes combining two or more pretreatment techniques is beneficial in reducing the number of process operational steps besides minimizing the production of undesirable inhibitors. However, an extensive research is still required for the development of new and more efficient pretreatment processes for lignocellulosic feedstocks yielding promising results.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass.

            The native form of lignocellulosic biomass is resistant to enzymatic breakdown. A well-designed pretreatment that can promote enzymatic hydrolysis of biomass with reasonable processing cost is therefore necessary. To this end, a number of different types of pretreatment technologies have been developed with a common goal of making biomass more susceptible to enzymatic saccharification. Among those, a pretreatment method using alkaline reagent has emerged as one of the most viable process options due primarily to its strong pretreatment effect and relatively simple process scheme. The main features of alkaline pretreatment are that it selectively removes lignin without degrading carbohydrates, and increases porosity and surface area, thereby enhancing enzymatic hydrolysis. In this review, the leading alkaline pretreatment technologies are described and their features and comparative performances are discussed from a process viewpoint. Attempts were also made to give insights into the chemical and physical changes of biomass brought about by pretreatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution

              Abstract Extensive research efforts have been dedicated to describing degradation of wood, which is a complex process; hence, microorganisms have evolved different enzymatic and non-enzymatic strategies to utilize this plentiful plant material. This review describes a number of fungal and bacterial organisms which have developed both competitive and mutualistic strategies for the decomposition of wood and to thrive in different ecological niches. Through the analysis of the enzymatic machinery engaged in wood degradation, it was possible to elucidate different strategies of wood decomposition which often depend on ecological niches inhabited by given organism. Moreover, a detailed description of low molecular weight compounds is presented, which gives these organisms not only an advantage in wood degradation processes, but seems rather to be a new evolutionatory alternative to enzymatic combustion. Through analysis of genomics and secretomic data, it was possible to underline the probable importance of certain wood-degrading enzymes produced by different fungal organisms, potentially giving them advantage in their ecological niches. The paper highlights different fungal strategies of wood degradation, which possibly correlates to the number of genes coding for secretory enzymes. Furthermore, investigation of the evolution of wood-degrading organisms has been described.
                Bookmark

                Author and article information

                Journal
                Frontiers in Energy Research
                Front. Energy Res.
                Frontiers Media SA
                2296-598X
                December 18 2018
                December 18 2018
                : 6
                Article
                10.3389/fenrg.2018.00141
                3228e7bd-53d0-42f6-bee2-6fef55bec762
                © 2018

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article