4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      In Situ Amplification-Based Imaging of RNA in Living Cells

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular beacons: probes that fluoresce upon hybridization.

          We have developed novel nucleic acid probes that recognize and report the presence of specific nucleic acids in homogeneous solutions. These probes undergo a spontaneous fluorogenic conformational change when they hybridize to their targets. Only perfectly complementary targets elicit this response, as hybridization does not occur when the target contains a mismatched nucleotide or a deletion. The probes are particularly suited for monitoring the synthesis of specific nucleic acids in real time. When used in nucleic acid amplification assays, gene detection is homogeneous and sensitive, and can be carried out in a sealed tube. When introduced into living cells, these probes should enable the origin, movement, and fate of specific mRNAs to be traced.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNA profiling: approaches and considerations.

            MicroRNAs (miRNAs) are small RNAs that post-transcriptionally regulate the expression of thousands of genes in a broad range of organisms in both normal physiological contexts and in disease contexts. miRNA expression profiling is gaining popularity because miRNAs, as key regulators in gene expression networks, can influence many biological processes and also show promise as biomarkers for disease. Technological advances have spawned a multitude of platforms for miRNA profiling, and an understanding of the strengths and pitfalls of different approaches can aid in their effective use. Here, we review the major considerations for carrying out and interpreting results of miRNA-profiling studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Programming biomolecular self-assembly pathways.

              In nature, self-assembling and disassembling complexes of proteins and nucleic acids bound to a variety of ligands perform intricate and diverse dynamic functions. In contrast, attempts to rationally encode structure and function into synthetic amino acid and nucleic acid sequences have largely focused on engineering molecules that self-assemble into prescribed target structures, rather than on engineering transient system dynamics. To design systems that perform dynamic functions without human intervention, it is necessary to encode within the biopolymer sequences the reaction pathways by which self-assembly occurs. Nucleic acids show promise as a design medium for engineering dynamic functions, including catalytic hybridization, triggered self-assembly and molecular computation. Here, we program diverse molecular self-assembly and disassembly pathways using a 'reaction graph' abstraction to specify complementarity relationships between modular domains in a versatile DNA hairpin motif. Molecular programs are executed for a variety of dynamic functions: catalytic formation of branched junctions, autocatalytic duplex formation by a cross-catalytic circuit, nucleated dendritic growth of a binary molecular 'tree', and autonomous locomotion of a bipedal walker.
                Bookmark

                Author and article information

                Journal
                ANIE
                Angewandte Chemie International Edition
                Angew. Chem. Int. Ed.
                Wiley
                14337851
                August 19 2019
                August 19 2019
                May 14 2019
                : 58
                : 34
                : 11574-11585
                Affiliations
                [1 ]School of Chemistry and Food Engineering; Changsha University of Science and Technology; Changsha 410114 China
                [2 ]State Key Laboratory for Chemo/Bio-Sensing and Chemometrics; College of Chemistry and Chemical Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics; Hunan University; Changsha 410082 China
                Article
                10.1002/anie.201812449
                30707484
                321be222-8811-4c4a-8ee0-fb1a7045adcb
                © 2019

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article