15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Structure of the membrane-assembled retromer coat determined by cryo-electron tomography

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Eukaryotic cells traffic proteins and lipids between different compartments using protein-coated vesicles and tubules. The retromer complex is required to generate cargo-selective tubulovesicular carriers from endosomal membranes1-3. Conserved in eukaryotes, retromer controls the cellular localization and homeostasis of hundreds of transmembrane proteins, and its disruption is associated with major neurodegenerative disorders4-7. How retromer is assembled and how it is recruited to form coated tubules is not known. Here we describe the structure of the retromer complex (Vps26-Vps29-Vps35) assembled on membrane tubules with the bin/amphiphysin/rvs-domain-containing sorting nexin protein Vps5, using cryo-electron tomography and subtomogram averaging. This reveals a membrane-associated Vps5 array, from which arches of retromer extend away from the membrane surface. Vps35 forms the 'legs' of these arches, and Vps29 resides at the apex where it is free to interact with regulatory factors. The bases of the arches connect to each other and to Vps5 through Vps26, and the presence of the same arches on coated tubules within cells confirms their functional importance. Vps5 binds to Vps26 at a position analogous to the previously described cargo- and Snx3-binding site, which suggests the existence of distinct retromer-sorting nexin assemblies. The structure provides insight into the architecture of the coat and its mechanism of assembly, and suggests that retromer promotes tubule formation by directing the distribution of sorting nexin proteins on the membrane surface while providing a scaffold for regulatory-protein interactions.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics.

          A novel method to flexibly fit atomic structures into electron microscopy (EM) maps using molecular dynamics simulations is presented. The simulations incorporate the EM data as an external potential added to the molecular dynamics force field, allowing all internal features present in the EM map to be used in the fitting process, while the model remains fully flexible and stereochemically correct. The molecular dynamics flexible fitting (MDFF) method is validated for available crystal structures of protein and RNA in different conformations; measures to assess and monitor the fitting process are introduced. The MDFF method is then used to obtain high-resolution structures of the E. coli ribosome in different functional states imaged by cryo-EM.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structural basis of membrane invagination by F-BAR domains.

            BAR superfamily domains shape membranes through poorly understood mechanisms. We solved structures of F-BAR modules bound to flat and curved bilayers using electron (cryo)microscopy. We show that membrane tubules form when F-BARs polymerize into helical coats that are held together by lateral and tip-to-tip interactions. On gel-state membranes or after mutation of residues along the lateral interaction surface, F-BARs adsorb onto bilayers via surfaces other than their concave face. We conclude that membrane binding is separable from membrane bending, and that imposition of the module's concave surface forces fluid-phase bilayers to bend locally. Furthermore, exposure of the domain's lateral interaction surface through a change in orientation serves as the crucial trigger for assembly of the helical coat and propagation of bilayer bending. The geometric constraints and sequential assembly of the helical lattice explain how F-BAR and classical BAR domains segregate into distinct microdomains, and provide insight into the spatial regulation of membrane invagination.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TOM software toolbox: acquisition and analysis for electron tomography.

              Automated data acquisition procedures have changed the perspectives of electron tomography (ET) in a profound manner. Elaborate data acquisition schemes with autotuning functions minimize exposure of the specimen to the electron beam and sophisticated image analysis routines retrieve a maximum of information from noisy data sets. "TOM software toolbox" integrates established algorithms and new concepts tailored to the special needs of low dose ET. It provides a user-friendly unified platform for all processing steps: acquisition, alignment, reconstruction, and analysis. Designed as a collection of computational procedures it is a complete software solution within a highly flexible framework. TOM represents a new way of working with the electron microscope and can serve as the basis for future high-throughput applications.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Nature America, Inc
                0028-0836
                1476-4687
                September 17 2018
                Article
                10.1038/s41586-018-0526-z
                6173284
                30224749
                320415dc-74cc-4f8e-bb8f-665a02f7c424
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article