4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biochar-Facilitated Soil Remediation: Mechanisms and Efficacy Variations

      , ,
      Frontiers in Environmental Science
      Frontiers Media SA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references136

          • Record: found
          • Abstract: found
          • Article: not found

          Biochar as a sorbent for contaminant management in soil and water: a review.

          Biochar is a stable carbon-rich by-product synthesized through pyrolysis/carbonization of plant- and animal-based biomass. An increasing interest in the beneficial application of biochar has opened up multidisciplinary areas for science and engineering. The potential biochar applications include carbon sequestration, soil fertility improvement, pollution remediation, and agricultural by-product/waste recycling. The key parameters controlling its properties include pyrolysis temperature, residence time, heat transfer rate, and feedstock type. The efficacy of biochar in contaminant management depends on its surface area, pore size distribution and ion-exchange capacity. Physical architecture and molecular composition of biochar could be critical for practical application to soil and water. Relatively high pyrolysis temperatures generally produce biochars that are effective in the sorption of organic contaminants by increasing surface area, microporosity, and hydrophobicity; whereas the biochars obtained at low temperatures are more suitable for removing inorganic/polar organic contaminants by oxygen-containing functional groups, electrostatic attraction, and precipitation. However, due to complexity of soil-water system in nature, the effectiveness of biochars on remediation of various organic/inorganic contaminants is still uncertain. In this review, a succinct overview of current biochar use as a sorbent for contaminant management in soil and water is summarized and discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dynamic molecular structure of plant biomass-derived black carbon (biochar).

            Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration ("biochar"). Here we present a molecular-level assessment of the physical organization and chemical complexity of biomass-derived chars and, specifically, that of aromatic carbon in char structures. Brunauer-Emmett-Teller (BET)-N(2) surface area (SA), X-ray diffraction (XRD), synchrotron-based near-edge X-ray absorption fine structure (NEXAFS), and Fourier transform infrared (FT-IR) spectroscopy are used to show how two plant materials (wood and grass) undergo analogous but quantitatively different physical-chemical transitions as charring temperature increases from 100 to 700 degrees C. These changes suggest the existence of four distinct categories of char consisting of a unique mixture of chemical phases and physical states: (i) in transition chars, the crystalline character of the precursor materials is preserved; (ii) in amorphous chars, the heat-altered molecules and incipient aromatic polycondensates are randomly mixed; (iii) composite chars consist of poorly ordered graphene stacks embedded in amorphous phases; and (iv) turbostratic chars are dominated by disordered graphitic crystallites. Molecular variations among the different char categories likely translate into differences in their ability to persist in the environment and function as environmental sorbents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Application of biochar for the removal of pollutants from aqueous solutions.

              In recent years, many studies have been devoted to investigate the application of biochar for pollutants removal from aqueous solutions. Biochar exhibits a great potential to efficiently tackle water contaminants considering the wide availability of feedstock, low-cost and favorable physical/chemical surface characteristics. This review provides an overview of biochar production technologies, biochar properties, and recent advances in the removal of heavy metals, organic pollutants and other inorganic pollutants using biochar. Experimental studies related to the adsorption behaviors of biochar toward various contaminants, key affecting factors and the underlying mechanisms proposed to explain the adsorption behaviors, have been comprehensively reviewed. Furthermore, research gaps and uncertainties that exist in the use of biochar as an adsorbent are identified. Further research needs for biochar and potential areas for future application of biochars are also proposed.
                Bookmark

                Author and article information

                Journal
                Frontiers in Environmental Science
                Front. Environ. Sci.
                Frontiers Media SA
                2296-665X
                October 21 2020
                October 21 2020
                : 8
                Article
                10.3389/fenvs.2020.521512
                31effa0d-08e6-4e84-b9bf-5d0dd31680e5
                © 2020

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article