46
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-wide Runx2 occupancy in prostate cancer cells suggests a role in regulating secretion

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Runx2 is a metastatic transcription factor (TF) increasingly expressed during prostate cancer (PCa) progression. Using PCa cells conditionally expressing Runx2, we previously identified Runx2-regulated genes with known roles in epithelial–mesenchymal transition, invasiveness, angiogenesis, extracellular matrix proteolysis and osteolysis. To map Runx2-occupied regions (R2ORs) in PCa cells, we first analyzed regions predicted to bind Runx2 based on the expression data, and found that recruitment to sites upstream of the KLK2 and CSF2 genes was cyclical over time. Genome-wide ChIP-seq analysis at a time of maximum occupancy at these sites revealed 1603 high-confidence R2ORs, enriched with cognate motifs for RUNX, GATA and ETS TFs. The R2ORs were distributed with little regard to annotated transcription start sites (TSSs), mainly in introns and intergenic regions. Runx2-upregulated genes, however, displayed enrichment for R2ORs within 40 kb of their TSSs. The main annotated functions enriched in 98 Runx2-upregulated genes with nearby R2ORs were related to invasiveness and membrane trafficking/secretion. Indeed, using SDS–PAGE, mass spectrometry and western analyses, we show that Runx2 enhances secretion of several proteins, including fatty acid synthase and metastasis-associated laminins. Thus, combined analysis of Runx2's transcriptome and genomic occupancy in PCa cells lead to defining its novel role in regulating protein secretion.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences

          Increased reliance on computational approaches in the life sciences has revealed grave concerns about how accessible and reproducible computation-reliant results truly are. Galaxy http://usegalaxy.org, an open web-based platform for genomic research, addresses these problems. Galaxy automatically tracks and manages data provenance and provides support for capturing the context and intent of computational methods. Galaxy Pages are interactive, web-based documents that provide users with a medium to communicate a complete computational analysis.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            R: a language and environment for statistic computing

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription.

              Many cofactors bind the hormone-activated estrogen receptor (ER), yet the specific regulators of endogenous ER-mediated gene transcription are unknown. Using chromatin immunoprecipitation (ChIP), we find that ER and a number of coactivators rapidly associate with estrogen responsive promoters following estrogen treatment in a cyclic fashion that is not predicted by current models of hormone activation. Cycles of ER complex assembly are followed by transcription. In contrast, the anti-estrogen tamoxifen (TAM) recruits corepressors but not coactivators. Using a genetic approach, we show that recruitment of the p160 class of coactivators is sufficient for gene activation and for the growth stimulatory actions of estrogen in breast cancer supporting a model in which ER cofactors play unique roles in estrogen signaling.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                April 2012
                April 2012
                19 December 2011
                19 December 2011
                : 40
                : 8
                : 3538-3547
                Affiliations
                1Departments of Biochemistry and Molecular Biology, 2Institute of Genetic Medicine, 3Preventive Medicine, 4Norris Cancer Center, 5USC Epigenome Center, 6Orthopaedic Surgery and 7Urology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
                Author notes
                *To whom correspondence should be addressed. Tel: +1 323 442 3914; Fax: +1 323 442 2764; Email: glittle@ 123456usc.edu
                Correspondence may also be addressed to Baruch Frenkel. Email: frenkel@ 123456usc.edu
                Article
                gkr1219
                10.1093/nar/gkr1219
                3333873
                22187159
                319ad9c5-f6d0-4217-b0a9-49a2df38ecdf
                © The Author(s) 2011. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 October 2011
                : 18 November 2011
                : 21 November 2011
                Page count
                Pages: 10
                Categories
                Genomics

                Genetics
                Genetics

                Comments

                Comment on this article