6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Study on Formulation, in vivo Exposure, and Passive Targeting of Intravenous Itraconazole Nanosuspensions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pharmacokinetic profile of a drug can be different when delivered as a nanosuspension compared with a true solution, which may in turn affect the therapeutic effect of the drug. The goal of this study was to prepare itraconazole nanosuspensions (ITZ-Nanos) stabilized by an amphipathic polymer, polyethylene glycol-poly (benzyl aspartic acid ester) (PEG-PBLA), by the precipitation-homogenization, and study the pharmacokinetic profile of the ITZ-Nanos. The particle size and morphology of nanosuspensions were determined by Zetasizer and field emission scanning electron microscope (SEM), respectively. The dissolution profile was evaluated using a paddle method according to Chinese Pharmacopoeia 2015. The level of ITZ in plasma and tissues was measured by a HPLC method. The optimized ITZ-Nanos had an average particle size of 268.1 ± 6.5 nm and the particles were in a rectangular form. The dissolution profile of ITZ-Nanos was similar to that of commercial ITZ injections, with nearly 90% ITZ released in the first 5 min. The ITZ-Nanos displayed different pharmacokinetic properties compared with the commercial ITZ injections, including a decreased initial drug concentration, increased plasma half-life and mean residence time (MRT), and increased concentration in the liver, lung, and spleen. The ITZ-Nanos can change the in vivo distribution of ITZ and result in passive targeting to the organs with mononuclear phagocyte systems (MPS).

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization.

          Organic itraconazole (ITZ) solutions were mixed with aqueous solutions to precipitate sub-300 nm particles over a wide range of energy dissipation rates, even for drug loadings as high as 86% (ITZ weight/total weight). The small particle sizes were produced with the stabilizer poloxamer 407, which lowered the interfacial tension, increasing the nucleation rate while inhibiting growth by coagulation and condensation. The highest nucleation rates and slowest growth rates were found at temperatures below 20 degrees C and increased with surfactant concentration and Reynolds number (Re). This increase in the time scale for growth reduced the Damkohler number (Da) (mixing time/precipitation time) to low values even for modest mixing energies. As the stabilizer concentration increased, the average particle size decreased and reached a threshold where Da may be considered to be unity. Da was maintained at a low value by compensating for a change in one variable away from optimum conditions (for small particles) by manipulating another variable. This tradeoff in compensation variables was demonstrated for organic flow rate vs Re, Re vs stabilizer concentration, stabilizer feed location (organic phase vs aqueous phase) vs stabilizer concentration, and stabilizer feed location vs Re. A decrease in the nucleation rate with particle density in the aqueous suspension indicated that secondary nucleation was minimal. A fundamental understanding of particle size control in antisolvent precipitation is beneficial for designing mixing systems and surfactant stabilizers for forming nanoparticles of poorly water soluble drugs with the potential for high dissolution rates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening.

            The effect of stabilizer type (small molecule vs. polymeric) and the amount of micellar solubilized drug on Ostwald ripening of nanosuspensions was investigated. Indomethacin nanosuspensions were prepared with small molecule stabilizers (sodium lauryl sulfate (SLS) and Dowfax 2A1 (DF)) and a polymeric stabilizer (hydroxypropyl methyl cellulose (HPMC)). Two different drug:stabilizer ratios were used to evaluate the effect of micellar solubilized drug. The Ostwald ripening potential of nanosuspensions was evaluated by subjecting them to various stress conditions (temperature (15, 25, 35 and 45°C), thermal cycling, and mechanical shaking) for three months. The mean particle size increased in all SLS and DF formulations stored under different stress conditions. No effect of micellar solubilized drug on the Ostwald ripening rate was observed. In the case of HPMC formulations only those stored at higher temperatures (35 or 45°C) exhibited an increase in mean particle size. The increase in size in the HPMC formulation stored at 45°C was attributed to dehydration of the HPMC chains and subsequent loss of protection of the nanoparticles. The cube of the mean particle diameter versus time plot was determined to be non-linear for all formulations exhibiting Ostwald ripening. Therefore, according to the Lifshitz, Slyozov and Wagner theory the process was not diffusion controlled. The most probable mechanism for Ostwald ripening was surface nucleation controlled.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity.

              The poor solubility of paclitaxel (PTX), the commercially most successful anticancer drug, has long been hampering the development of suitable formulations. Here, we present translational evaluation of a nanoformulation of PTX, which is characterized by a facile preparation, extraordinary high drug loading of 50% wt. and PTX solubility of up to 45 g/L, excellent shelf stability and controllable, sub-100 nm size. We observe favorable in vitro and in vivo safety profiles and a higher maximum tolerated dose compared to clinically approved formulations. Pharmacokinetic analysis reveals that the higher dose administered leads to a higher exposure of the tumor to PTX. As a result, we observed improved therapeutic outcome in orthotopic tumor models including particularly faithful and aggressive "T11" mouse claudin-low breast cancer orthotopic, syngeneic transplants. The promising preclinical data on the presented PTX nanoformulation showcase the need to investigate new excipients and is a robust basis to translate into clinical trials.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                28 March 2019
                2019
                : 10
                : 225
                Affiliations
                [1] 1 School of Pharmacy, Institute of Materia Medica, Henan University , Kaifeng, China
                [2] 2 School of Pharmacy, The Institute for Science and Technology in Medicine, Keele University , Staffordshire, United Kingdom
                Author notes

                Edited by: Qingxin Mu, University of Washington, United States

                Reviewed by: Po-Chang Chiang, Genentech, Inc., United States; Lei Xing, China Pharmaceutical University, China; Liandong Hu, Hebei University, China

                These authors contributed equally to this work and should be considered co-first authors

                This article was submitted to Experimental Pharmacology and Drug Discovery, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2019.00225
                6447661
                318cd267-f53e-4914-b4cf-994c0fc95f57
                Copyright © 2019 Yuan, Wang, Song, Hou, Yu, Zheng, Zhang, Pu, Han and Zong.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 10 January 2019
                : 22 February 2019
                Page count
                Figures: 5, Tables: 3, Equations: 2, References: 39, Pages: 8, Words: 5096
                Funding
                Funded by: National Nature Science Foundation of China
                Award ID: No. U1304826
                Funded by: Henan Provincial Department of Education 10.13039/501100009101
                Award ID: No. 19A350001
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                itraconazole nanosuspension,process optimization,in vivo pharmacokinetics,tissue distribution,passive targeting

                Comments

                Comment on this article