6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Treatment-seeking and uptake of malaria prevention strategies among pregnant women and caregivers of children under-five years during COVID-19 pandemic in rural communities in South West Uganda: a qualitative study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Despite efforts to avert the negative effects of malaria, there remain barriers to the uptake of prevention measures, and these have hindered its eradication. This study explored the factors that influence uptake of malaria prevention strategies among pregnant women and children under-five years and the impact of COVID-19 in a malaria endemic rural district in Uganda.

          Methods

          This was a qualitative case study that used focus group discussions, in-depth interviews, and key informant interviews involving pregnant women, caregivers of children under-five years, traditional birth attendants, village health teams, local leaders, and healthcare providers to explore malaria prevention uptake among pregnant women and children under-five years. The interviews were audio-recorded, transcribed and data were analyzed using thematic content approach.

          Results

          Seventy-two participants were enrolled in the Focus Group Discussions, 12 in the in-depth interviews, and 2 as key informants. Pregnant women and caregivers of children under-five years were able to recognize causes of malaria, transmission, and symptoms. All participants viewed malaria prevention as a high priority, and the use of insecticide-treated mosquito bed nets (ITNs) was upheld. Participants' own experiences indicated adverse effects of malaria to both pregnant women and children under-five. Home medication and the use of local herbs were a common practice. Some participants didn’t use any of the malaria prevention methods due to deliberate refusal, perceived negative effects of the ITNs, and family disparity. The Corona Virus Disease-2019 (COVID-19) control measures did not abate the risk of malaria infection but these were deleterious to healthcare access and the focus of malaria prevention.

          Conclusions

          Although pregnant women and caregivers of children under-five years recognized symptoms of malaria infection, healthcare-seeking was not apt as some respondents used alternative approaches and delayed seeking formal healthcare. It is imperative to focus on the promotion of malaria prevention strategies and address drawbacks associated with misconceptions about these interventions, and promotion of health-seeking behaviors. As COVID-19 exacerbated the effect of malaria prevention uptake and healthcare seeking, it’s critical to recommit and integrate COVID-19 prevention measures in normative living and restrict future barriers to healthcare access.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12889-022-12771-3.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Increased Pyrethroid Resistance in Malaria Vectors and Decreased Bed Net Effectiveness, Burkina Faso

          Long-lasting insecticide–treated bed nets (LLINs) have been shown repeatedly to provide protection against malaria transmission in Africa and reduce childhood mortality rates by ≈20% ( 1 ). Distribution of LLINs has increased over the past decade, and an estimated 54% of households at risk for malaria in sub-Saharan Africa have ≥1 LLIN. This factor has been a major contributor in reducing malaria incidence; the estimated malaria mortality rate for Africa has decreased by ≈49% since 2000 ( 2 ). These advances are now threatened by rapid selection and spread of resistance to insecticides in malaria vectors ( 3 ). Resistance to pyrethroids, the only class of insecticides available for use on LLINs, is now widespread in Anopheles gambiae and An. funestus mosquitoes, the major malaria vectors ( 4 ). To standardize monitoring for insecticide resistance, the World Health Organization (WHO) has developed simple bioassays that use filter papers impregnated with insecticide at a predefined diagnostic dose. A population is described as resistant to an insecticide if a mortality rate >90% is observed in these tests ( 5 ). These assays are useful for detecting resistance when it first appears in the population. However, these assays do not provide any information on the strength of this resistance. This information is crucial for assessing the likely effect of this resistance on effectiveness of vector control tools. The Global Plan for Insecticide Resistance Management in Malaria Vectors ( 3 ) recommends that all malaria-endemic countries monitor insecticide resistance in local vectors. However, because the correlation between results of diagnostic dose assays and control effectiveness remains undefined, simple detection of resistance in a mosquito population is not sufficient evidence to implement a change in insecticide policy. In this study, we used variants of WHO assays and bottle assays of the Centers for Disease Control and Prevention (CDC) (Atlanta, GA, USA) to quantify the level of pyrethroid resistance in a population of An. gambiae mosquitoes from Burkina Faso over a 3-year period. A high level of resistance was observed. The lack of comparator data from across Africa makes it impossible to conclude whether the pyrethroid resistance levels seen in Burkina Faso are atypical. However, these data should raise concerns for malaria control across Africa because we demonstrate that this level of resistance is causing operational failure of the insecticides used in LLINs. Materials and Methods The study site was in Vallée de Kou (Bama) in southwestern Burkina Faso, ≈25 km from the city of Bobo-Dioulasso. It consists of 7 small villages (area 1,200 hectares) and has been a major rice cultivation site since the 1970s. The area is surrounded by cotton-, rice-, and vegetable-growing areas in which insecticide use is intensive ( 6 ). Multiple rounds of collections of third and fourth instar Anopheles spp. larvae were performed in a 1-km2 radius from village 7 during June–July 2011, October 2011, June 2012, and July–October 2013. Mosquitoes from each collection round were pooled and reared to adults in insectaries at the Institut de Recherche en Sciences de la Sante/Centre Muraz in Bobo-Dioulasso or the Centre National de Recherche et de Formation sur le Paludisme (CNRFP) in Ouagadougou. Species were identified for a subset of mosquitoes from each collection round by using the Sine 200 PCR ( 7 ). Non–blood fed An. gambiae female mosquitoes (3–5 days old) were tested with 5 insecticides in 4 insecticide classes: 0.75% permethrin (type I pyrethroid) and 0.05% deltamethrin (type II pyrethroid); 4% DDT (organochlorine); 0.1% bendiocarb (carbamate); and 1% fenitrothion (organophosphate) by using WHO susceptibility tests ( 8 ). Each batch of insecticide-impregnated papers was tested against mosquitoes of the An. gambiae Kisumu laboratory strain (insecticide-susceptible) at the CNRFP bioassay laboratory for quality control. Approximately 100 mosquitoes (4 replicates of 25 mosquitoes) were used per test ( 5 ). The average mortality rate and binomial confidence interval were calculated per insecticide ( 9 ). In 2011 and 2012, the 50% lethality time (LT50) for the VK7 strain of An. gambiae mosquitoes was determined by varying the length of exposure time (60–600 min). The mean mortality rate was recorded per time point, and the LT50 was estimated by fitting a logistic regression model by using logit-transformed probabilities ( 10 ) in R statistical software (http://www.r-project.org). In 2013, CDC bottle bioassays were used to quantify the level of resistance to deltamethrin. Glass 250-mL bottles were coated with different concentration of deltamethrin ranging from 3.125 μg/mL to 125 μg/mL at CNRFP. Bottles were prepared according to CDC guidelines ( 11 ). Female mosquitoes (3–5 days) were aspirated into bottles for 1 h and subsequently transferred to insecticide-free paper cups for 24 h of observation. Four to six replicates were performed for each concentration and for the control bottles (impregnated with acetone). Equivalent age mosquitoes of the Kisumu strain were exposed to various insecticide concentrations (range 0.001 μg/mL–0.5 μg/mL). The 50% lethal dose (LD50) was determined by using R statistical software. A subset of LLINs that were distributed during the 2010 national distribution campaign were collected directly from houses in 2012; householders were given a new LLIN as a replacement. Only nets reportedly washed ≤5 times were included in the study. New net samples of the same type were also obtained from the population or from local markets. Six types of nets were tested: PermaNet 2.0 (deltamethrin coated on polyester; Vestergaard, Lausanne, Switzerland); Interceptor (α-cypermethrin coated on polyester; BASF, Florham Park, NJ, USA); DawaPlus (deltamethrin coated on polyester; TANA Netting Ltd., Bangkok, Thailand); NetProtect (deltamethrin incorporated into polyethylene; BESTNET, Kolding, Denmark); PermaNet 3.0 (deltamethrin coated on polyester with strengthened border side panels and deltamethrin and piperonyl butoxide incorporated into a polyethylene roof; Vestergaard); and Olyset (permethrin incorporated into polyethylene; Sumitomo Chemical Co., Ltd., Osaka, Japan).. Cone bioassays were performed according to WHO procedures ( 12 ) by using non–blood fed VK7 mosquitoes (3–5 days old) (obtained from larvae collection during October–December 2012) and Kisumu strain mosquitoes. Approximately 60 mosquitoes were assessed per net by using net samples from 2 sides and the top (20 mosquitoes/net sample). Mosquitoes were exposed to the insecticide for 3 min. Knockdown was recorded after 60 min, and the mortality rate was determined 24 h later. Mortality rates after exposure to each net were compared for wild-type and laboratory susceptible (laboratory raised) mosquitoes by using the Fisher exact test. High-performance liquid chromatography was used to measure the insecticide content of 12 nets. Triplicate samples were tested from each net, and insecticide was extracted from five 8-cm2 disks for each sample by vortexing them in acetone. A 10-μL aliquot was injected onto a reverse-phase, 250 mm, C18 column (Acclaim 120; Dionex, Sunnyvale, CA, USA). Separation was achieved by using a mobile phase of methanol/water (90:10 vol/vol) and at flow rate of 1 mL/min. Pyrethroid elution was monitored by absorption at 232 nm and quantified by peak integration (Chromeleon; Dionex). The quantity of pyrethroid insecticide was determined from a standard curve established with known concentration of pyrethroid insecticide. Results All An. gambiae VK7 mosquitoes collected were the M form, except for those collected during October 2011 and June–July 2013, of which the M form comprised 92% (315/335) and 90% (258/287) of the An. gambiae sensu lato populations, respectively. Susceptibility to 5 insecticides was assessed in adults emerging from VK7 strain larval collections in 3 successive years. An. gambiae mosquitoes remained fully susceptible to fenitrothion and showed a high mortality rate to bendiocarb (86.5% in June 2013) but low mortality rates to DDT (range 0%–3%) and for the pyrethroids deltamethrin and permethrin (range 1%–6%) However, no significant differences were found between results of the 3 successive years (p = 0.055) (Figure 1). Figure 1 Results of World Health Organization (WHO) susceptibility tests for Anopheles gambiae VK7 mosquitoes, Burkina Faso. Adult female mosquitos were exposed to the WHO diagnostic dose of insecticides for 1 h, and mortality rates were recorded 24 h later. Error bars indicate 95% binomial CIs for 3 consecutive years (2011–2013) of sampling. Initially, the strength of resistance was assessed by determining the LT50 for deltamethrin. In July 2011, an LT50 of 1 h 38 min (95% CI 1 h 34 min–1 h 42 min) was obtained but this value increased to 4 h 14 min (95% CI  3 h 53 min–4 h 36 min) in October of the same year (Figure 2), which is a 2.6-fold increase in only 4 months. An accurate LT50 could not be determined for samples collected in June 2012. The longest exposure time of 600 min (10 h) showed a mortality rate of 26% (95% CI 17.85%–35.50%), which extrapolates to an LT50 of 21 h 55 min (95% CI 14 h 3 min–34 h 14 min). The estimated LT50 for the Kisumu strain was 80% and knockdown rate >95%). When we evaluated the nets against VK7 mosquitoes, none of the nets satisfied the knockdown criteria and mean mortality rates were 1,000 fold in 2013 (estimated by LD50) reported in the current study are the highest in the published literature. This level of resistance will almost certainly affect the effectiveness of vector control. We demonstrate that the insecticide resistance of VK7 mosquitoes severely affected the performance of LLINs in standardized laboratory bioassays. In Kenya, pyrethroid-resistant mosquitoes were found resting inside holed LLINs and, when tested by cone bioassays, these LLINs were also found to be ineffective at killing local vectors ( 17 ). Linking resistance strength with increases in malaria transmission is currently not possible but is a key priority for further studies. No data on the strength of pyrethroid resistance in An. funestus mosquitoes in southern Africa in 2000 are available. This resistance has been widely accredited with causing control failure that resulted in a dramatic increase in malaria cases ( 18 ). Finally, it is vital to recognize that insecticide resistance is not the only cause of reduced effectiveness of vector control tools. In the current study, we showed that cone bioassays for new and used LLINS were less effective at killing the field-caught An. gambiae mosquitoes than they were against a standard susceptible (laboratory raised) strain, which provided additional evidence for the effect of resistance. However, we also found that 2 brands of the LLINs (Olyset and DawaPlus) showed poor performance against the susceptible mosquito strain, and another LLIN (Interceptor) showed adequate performance only when new nets were used. Although these data were obtained for a small sample set, they are a cause for concern and must be investigated further.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Prevalence of SARS-CoV-2 infection in previously undiagnosed health care workers in New Jersey, at the onset of the U.S. COVID-19 pandemic

            Background Healthcare workers (HCW) are presumed to be at increased risk of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection due to occupational exposure to infected patients. However, there has been little epidemiological research to assess these risks. Methods We conducted a prospective cohort study of HCW (n = 546) and non-healthcare workers (NHCW; n = 283) with no known prior SARS-CoV-2 infection who were recruited from a large U.S. university and two affiliated university hospitals. In this cross-sectional analysis of data collected at baseline, we examined SARS-CoV-2 infection status (as determined by presence of SARS-CoV-2 RNA in oropharyngeal swabs) by healthcare worker status and role. Results At baseline, 41 (5.0%) of the participants tested positive for SARS-CoV-2 infection, of whom 14 (34.2%) reported symptoms. The prevalence of SARS-CoV-2 infection was higher among HCW (7.3%) than in NHCW (0.4%), representing a 7.0% greater absolute risk (95% confidence interval for risk difference 4.7, 9.3%). The majority of infected HCW (62.5%) were nurses. Positive tests increased across the two weeks of cohort recruitment in line with rising confirmed cases in the hospitals and surrounding counties. Conclusions Overall, our results demonstrate that HCW had a higher prevalence of SARS-CoV-2 infection than NHCW. Continued follow-up of this cohort will enable us to monitor infection rates and examine risk factors for transmission. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-020-05587-2.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Prevention Efforts for Malaria

              Purpose of Review Malaria remains a global burden contributing to morbidity and mortality especially in children under 5 years of age. Despite the progress achieved towards malaria burden reduction, achieving elimination in more countries remains a challenge. This article aims to review the prevention and control strategies for malaria, to assess their impact towards reducing the disease burden and to highlight the best practices observed. Recent Findings Use of long-lasting insecticide-treated nets and indoor residual spraying has resulted a decline in the incidence and prevalence of malaria in Sub-Saharan Africa. Other strategies such as larval source management have been shown to reduce mosquito density but require further evaluation. New methods under development such as house improvement have demonstrated to minimize disease burden but require further evidence on efficacy. Development of the RTS,S/AS01 malaria vaccine that provides protection in under-five children has provided further progress in efforts of malaria control. Summary There has been a tremendous reduction in malaria burden in the past decade; however, more work is required to fill the necessary gaps to eliminate malaria.
                Bookmark

                Author and article information

                Contributors
                imugisha@ymail.com
                sashaba@must.ac.ug
                kyarisiimaroze@gmail.com
                ayebazibwecarlrona@yahoo.com
                ruthharvestplushcu@gmail.com
                mattisc@mcmaster.ca
                Journal
                BMC Public Health
                BMC Public Health
                BMC Public Health
                BioMed Central (London )
                1471-2458
                21 February 2022
                21 February 2022
                2022
                : 22
                : 373
                Affiliations
                [1 ]GRID grid.442638.f, ISNI 0000 0004 0436 3538, Clarke International University, ; P.O Box 7782, Kampala, Uganda
                [2 ]GRID grid.33440.30, ISNI 0000 0001 0232 6272, Mbarara University of Science and Technology, ; P.O Box 1410, Mbarara, Uganda
                [3 ]Rwamanja Refugee Settlement, Kamwenge District, Uganda
                [4 ]McMaster Midwifery Research Centre, Hamilton, Canada
                Article
                12771
                10.1186/s12889-022-12771-3
                8860364
                35189865
                318990f4-9f55-4ddf-9120-a1a89c714a71
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 1 July 2021
                : 14 February 2022
                Funding
                Funded by: MicroResearch Canada (www.microresearch.ca)
                Award ID: MR 19N MUS 01
                Categories
                Research
                Custom metadata
                © The Author(s) 2022

                Public health
                malaria prevention,pregnant women,children under-five,covid-19,uganda
                Public health
                malaria prevention, pregnant women, children under-five, covid-19, uganda

                Comments

                Comment on this article