12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Morphine preferentially activates the periaqueductal gray-rostral ventromedial medullary pathway in the male rat: a potential mechanism for sex differences in antinociception.

      1 , ,
      Neuroscience
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The midbrain periaqueductal gray (PAG), and its descending projections to the rostral ventromedial medulla (RVM), provide an essential neural circuit for opioid-produced antinociception. Recent anatomical studies have reported that the projections from the PAG to the RVM are sexually dimorphic and that systemic administration of morphine significantly suppresses pain-induced activation of the PAG in male but not female rats. Given that morphine antinociception is produced in part by disinhibition of PAG output neurons, it is hypothesized that a differential activation of PAG output neurons mediates the sexually dimorphic actions of morphine. The present study examined systemic morphine-induced activation of PAG-RVM neurons in the absence of pain. The retrograde tracer Fluorogold (FG) was injected into the RVM to label PAG-RVM output neurons. Activation of PAG neurons was determined by quantifying the number of Fos-positive neurons 1 h following systemic morphine administration (4.5 mg/kg). Morphine produced comparable activation of the PAG in both male and female rats, with no significant differences in either the quantitative or qualitative distribution of Fos. While microinjection of FG into the RVM labeled significantly more PAG output neurons in female rats than male rats, very few of these neurons (20%) were activated by systemic morphine administration in comparison to males (50%). The absolute number of PAG-RVM neurons activated by morphine was also greater in males. These data demonstrate widespread disinhibition of PAG neurons following morphine administration. The greater morphine-induced activation of PAG output neurons in male compared with female rats is consistent with the greater morphine-induced antinociception observed in males.

          Related collections

          Author and article information

          Journal
          Neuroscience
          Neuroscience
          Elsevier BV
          0306-4522
          0306-4522
          Jun 29 2007
          : 147
          : 2
          Affiliations
          [1 ] Department of Biology, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA.
          Article
          S0306-4522(07)00347-8 NIHMS26616
          10.1016/j.neuroscience.2007.03.053
          1949345
          17540508
          31832068-83ba-4def-a6f2-7b3881368aa7
          History

          Comments

          Comment on this article