4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Role of Oxidative Stress in the Development and Therapeutic Intervention of Hepatocellular Carcinoma

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract:

          Oxidative stress (OS) is a condition in which the body has an unbalanced oxidative and antioxidant effect. Oxidative stress has emerged as a critical component in the onset and progression of numerous diseases, including liver cancer and chronic liver disease caused by the hepatitis C virus and hepatitis B virus. Reactive oxygen species (ROS) are the most prevalent reactive chemical species involved in the oxidative stress response during the progression of the disease. Oxidative stress has a unique role in the development of hepatocellular carcinoma (HCC), and excessive ROS production is a common occurrence in liver illnesses of various etiologies. In response to various deleterious stimuli, the liver shows manifestations of lipid accumulation, oxidative damage, inflammatory infiltration, and immune response, which interact with each other in a mutually reinforcing manner, collectively exacerbating liver damage and malignant transformation. The intracellular buildup of ROS is a two-edged sword for tumor advancement. ROS are tumorigenic, and low amounts of ROS can trigger different signaling pathways that promote proliferation, survival, and migration, among other aspects. However, excessive oxidative stress can induce tumor cell death. Understanding the mechanisms of oxidative stress in hepatocellular carcinogenesis is beneficial for the prevention and surveillance of hepatocellular carcinoma in humans. An improved knowledge of the impacts and potential implications of oxidative stress regulation in therapeutic strategies will likely allow us to find new therapeutic targets for cancer. Oxidative stress also plays a significant role in the treatment of hepatocellular carcinoma and the mechanisms of drug resistance involved. This paper reviews recent studies on oxidative stress in HCC that are more reliable and important, and provides a more comprehensive view of the development of the treatment of HCC based on the relevant summaries of the effect of oxidative stress on the treatment.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hepatocellular carcinoma

            Liver cancer remains a global health challenge, with an estimated incidence of >1 million cases by 2025. Hepatocellular carcinoma (HCC) is the most common form of liver cancer and accounts for ~90% of cases. Infection by hepatitis B virus and hepatitis C virus are the main risk factors for HCC development, although non-alcoholic steatohepatitis associated with metabolic syndrome or diabetes mellitus is becoming a more frequent risk factor in the West. Moreover, non-alcoholic steatohepatitis-associated HCC has a unique molecular pathogenesis. Approximately 25% of all HCCs present with potentially actionable mutations, which are yet to be translated into the clinical practice. Diagnosis based upon non-invasive criteria is currently challenged by the need for molecular information that requires tissue or liquid biopsies. The current major advancements have impacted the management of patients with advanced HCC. Six systemic therapies have been approved based on phase III trials (atezolizumab plus bevacizumab, sorafenib, lenvatinib, regorafenib, cabozantinib and ramucirumab) and three additional therapies have obtained accelerated FDA approval owing to evidence of efficacy. New trials are exploring combination therapies, including checkpoint inhibitors and tyrosine kinase inhibitors or anti-VEGF therapies, or even combinations of two immunotherapy regimens. The outcomes of these trials are expected to change the landscape of HCC management at all evolutionary stages.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The gut microbiota as an environmental factor that regulates fat storage.

              New therapeutic targets for noncognitive reductions in energy intake, absorption, or storage are crucial given the worldwide epidemic of obesity. The gut microbial community (microbiota) is essential for processing dietary polysaccharides. We found that conventionalization of adult germ-free (GF) C57BL/6 mice with a normal microbiota harvested from the distal intestine (cecum) of conventionally raised animals produces a 60% increase in body fat content and insulin resistance within 14 days despite reduced food intake. Studies of GF and conventionalized mice revealed that the microbiota promotes absorption of monosaccharides from the gut lumen, with resulting induction of de novo hepatic lipogenesis. Fasting-induced adipocyte factor (Fiaf), a member of the angiopoietin-like family of proteins, is selectively suppressed in the intestinal epithelium of normal mice by conventionalization. Analysis of GF and conventionalized, normal and Fiaf knockout mice established that Fiaf is a circulating lipoprotein lipase inhibitor and that its suppression is essential for the microbiota-induced deposition of triglycerides in adipocytes. Studies of Rag1-/- animals indicate that these host responses do not require mature lymphocytes. Our findings suggest that the gut microbiota is an important environmental factor that affects energy harvest from the diet and energy storage in the host. Data deposition: The sequences reported in this paper have been deposited in the GenBank database (accession nos. AY 667702--AY 668946).
                Bookmark

                Author and article information

                Contributors
                Journal
                Current Cancer Drug Targets
                CCDT
                Bentham Science Publishers Ltd.
                15680096
                November 2023
                November 2023
                : 23
                : 10
                : 792-804
                Affiliations
                [1 ]Department of Infectious Disease, The First Affiliated Hospital of Soochow University, Suzhou, China
                [2 ]Department of Hepatobiliary Medicine, Tangshan People's Hospital, Tangshan, China
                [3 ]Department of Endocrine, Tangshan Gongren Hospital, Tangshan, China
                Article
                10.2174/1568009623666230418121130
                37073651
                316f9820-7315-42e4-a458-0b575de9079f
                © 2023
                History

                Comments

                Comment on this article