3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Embryonic stem cell-derived mesenchymal stem cells alleviate skeletal muscle injury induced by acute compartment syndrome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Acute compartment syndrome (ACS), a well-known complication of musculoskeletal injury, results in muscle necrosis and cell death. Embryonic stem cell-derived mesenchymal stem cells (ESC-MSCs) have been shown to be a promising therapy for ACS. However, their effectiveness and potentially protective mechanism remain unknown. The present study was designed to investigate the efficacy and underlying mechanism of ESC-MSCs in ACS-induced skeletal muscle injury.

          Method

          A total of 168 male Sprague–Dawley (SD) rats underwent 2 h of intracompartmental pressure elevation by saline infusion into the anterior compartment of the left hindlimb to establish the ACS model. ESC-MSCs were differentiated from the human embryonic stem cell (ESC) line H9. A dose of 1.2 × 10 6 of ESC-MSCs was intravenously injected during fasciotomy. Post-ACS assessments included skeletal edema index, serum indicators, histological analysis, apoptosis, fibrosis, regeneration, and functional recovery of skeletal muscle. Then, fluorescence microscopy was used to observe the distribution of labeled ESC-MSCs in vivo, and western blotting and immunofluorescence analyses were performed to examine macrophages infiltration in skeletal muscle. Finally, we used liposomal clodronate to deplete macrophages and reassess skeletal muscle injury in response to ESC-MSC therapy.

          Result

          ESC-MSCs significantly reduced systemic inflammatory responses, ACS-induced skeletal muscle edema, and cell apoptosis. In addition, ESC-MSCs inhibited skeletal muscle fibrosis and increased regeneration and functional recovery of skeletal muscle after ACS. The beneficial effects of ESC-MSCs on ACS-induced skeletal muscle injury were accompanied by a decrease in CD86-positive M1 macrophage polarization and an increase in CD206-positive M2 macrophage polarization. After depleting macrophages with liposomal clodronate, the beneficial effects of ESC-MSCs were attenuated.

          Conclusion

          Our findings suggest that embryonic stem cell-derived mesenchymal stem cells infusion could effectively alleviate ACS-induced skeletal muscle injury, in which the beneficial effects were related to the regulation of macrophages polarization.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Embryonic stem cell lines derived from human blastocysts.

          Human blastocyst-derived, pluripotent cell lines are described that have normal karyotypes, express high levels of telomerase activity, and express cell surface markers that characterize primate embryonic stem cells but do not characterize other early lineages. After undifferentiated proliferation in vitro for 4 to 5 months, these cells still maintained the developmental potential to form trophoblast and derivatives of all three embryonic germ layers, including gut epithelium (endoderm); cartilage, bone, smooth muscle, and striated muscle (mesoderm); and neural epithelium, embryonic ganglia, and stratified squamous epithelium (ectoderm). These cell lines should be useful in human developmental biology, drug discovery, and transplantation medicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Current Mechanistic Concepts in Ischemia and Reperfusion Injury.

            Ischemia-reperfusion injury is associated with serious clinical manifestations, including myocardial hibernation, acute heart failure, cerebral dysfunction, gastrointestinal dysfunction, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome. Ischemia-reperfusion injury is a critical medical condition that poses an important therapeutic challenge for physicians. In this review article, we present recent advances focusing on the basic pathophysiology of ischemia-reperfusion injury, especially the involvement of reactive oxygen species and cell death pathways. The involvement of the NADPH oxidase system, nitric oxide synthase system, and xanthine oxidase system are also described. When the blood supply is re-established after prolonged ischemia, local inflammation and ROS production increase, leading to secondary injury. Cell damage induced by prolonged ischemia-reperfusion injury may lead to apoptosis, autophagy, necrosis, and necroptosis. We highlight the latest mechanistic insights into reperfusion-injury-induced cell death via these different processes. The interlinked signaling pathways of cell death could offer new targets for therapeutic approaches. Treatment approaches for ischemia-reperfusion injury are also reviewed. We believe that understanding the pathophysiology ischemia-reperfusion injury will enable the development of novel treatment interventions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Myocardial ischaemia–reperfusion injury and cardioprotection in perspective

              Despite the increasing use and success of interventional coronary reperfusion strategies, morbidity and mortality from acute myocardial infarction are still substantial. Myocardial infarct size is a major determinant of prognosis in these patients. Therefore, cardioprotective strategies aim to reduce infarct size. However, a perplexing gap exists between the many preclinical studies reporting infarct size reduction with mechanical and pharmacological interventions and the poor translation into better clinical outcomes in patients. This Review revisits the pathophysiology of myocardial ischaemia-reperfusion injury, including the role of autophagy and forms of cell death such as necrosis, apoptosis, necroptosis and pyroptosis. Other cellular compartments in addition to cardiomyocytes are addressed, notably the coronary microcirculation. Preclinical and clinical research developments in mechanical and pharmacological approaches to induce cardioprotection, and their signal transduction pathways, are discussed. Additive cardioprotective interventions are advocated. For clinical translation into treatments for patients with acute myocardial infarction, who typically are of advanced age, have comorbidities and are receiving several medications, not only infarct size reduction but also attenuation of coronary microvascular obstruction, as well as longer-term targets including infarct repair and reverse remodelling, must be considered to improve patient outcomes. Future clinical trials must focus on patients who really need adjunct cardioprotection, that is, those with severe haemodynamic alterations.
                Bookmark

                Author and article information

                Contributors
                z2jzk@zju.edu.cn
                Journal
                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central (London )
                1757-6512
                15 July 2022
                15 July 2022
                2022
                : 13
                : 313
                Affiliations
                [1 ]GRID grid.13402.34, ISNI 0000 0004 1759 700X, Department of Emergency Medicine, Second Affiliated Hospital, , Zhejiang University School of Medicine, ; No. 88 Jiefang Road, Hangzhou, 310009 China
                [2 ]Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
                [3 ]Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
                Article
                3000
                10.1186/s13287-022-03000-0
                9284828
                35841081
                3149ff46-b9e6-4ae2-8488-900da0a1a939
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 9 February 2022
                : 14 May 2022
                Funding
                Funded by: Natural Science Foundation of China
                Award ID: 82072126
                Award Recipient :
                Funded by: Zhejiang Provincial Key Research and Development Program of China
                Award ID: 2021C03073
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100013058, Jiangsu Provincial Key Research and Development Program;
                Award ID: 2021C03036
                Award Recipient :
                Funded by: The Key Program Cosponsored by Zhejiang Province and National Health Commission of China
                Award ID: WKJ-ZJ-2207
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2022

                Molecular medicine
                acute compartment syndrome,skeletal muscle injury,embryonic stem cells,mesenchymal stem cells,macrophages

                Comments

                Comment on this article