52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Toll-like receptor 7 (TLR7)–driven accumulation of a novel CD11c+ B-cell population is important for the development of autoimmunity

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Females are more susceptible than males to many autoimmune diseases. The processes causing this phenomenon are incompletely understood. Here, we demonstrate that aged female mice acquire a previously uncharacterized population of B cells that we call age-associated B cells (ABCs) and that these cells express integrin αX chain (CD11c). This unexpected population also appears in young lupus-prone mice. On stimulation, CD11c+ B cells, both from autoimmune-prone and healthy strains of mice, secrete autoantibodies, and depletion of these cells in vivo leads to reduction of autoreactive antibodies, suggesting that the cells might have a direct role in the development of autoimmunity. We have explored factors that contribute to appearance of ABCs and demonstrated that signaling through Toll-like receptor 7 is crucial for development of this B cell population. We were able to detect a similar population of B cells in the peripheral blood of some elderly women with autoimmune disease, suggesting that there may be parallels between the creation of ABC-like cells between mice and humans.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          Gene action in the X-chromosome of the mouse (Mus musculus L.).

          MARY LYON (1961)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Sex differences in autoimmune disease.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              X-inactivation profile reveals extensive variability in X-linked gene expression in females.

              In female mammals, most genes on one X chromosome are silenced as a result of X-chromosome inactivation. However, some genes escape X-inactivation and are expressed from both the active and inactive X chromosome. Such genes are potential contributors to sexually dimorphic traits, to phenotypic variability among females heterozygous for X-linked conditions, and to clinical abnormalities in patients with abnormal X chromosomes. Here, we present a comprehensive X-inactivation profile of the human X chromosome, representing an estimated 95% of assayable genes in fibroblast-based test systems. In total, about 15% of X-linked genes escape inactivation to some degree, and the proportion of genes escaping inactivation differs dramatically between different regions of the X chromosome, reflecting the evolutionary history of the sex chromosomes. An additional 10% of X-linked genes show variable patterns of inactivation and are expressed to different extents from some inactive X chromosomes. This suggests a remarkable and previously unsuspected degree of expression heterogeneity among females.
                Bookmark

                Author and article information

                Journal
                Blood
                American Society of Hematology
                0006-4971
                1528-0020
                August 04 2011
                August 04 2011
                : 118
                : 5
                : 1305-1315
                Affiliations
                [1 ]Howard Hughes Medical Institute and Department of Immunology, National Jewish Health and University of Colorado Health Sciences Center, Denver, CO;
                [2 ]Division of Rheumatology, National Jewish Health, Denver, CO; and
                [3 ]Departments of Medicine,
                [4 ]Pharmacology, and
                [5 ]Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, CO
                Article
                10.1182/blood-2011-01-331462
                3152497
                21543762
                312b02f4-a97d-4a9c-a938-2f85e146056b
                © 2011
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content170

                Cited by326

                Most referenced authors660