2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rhizosphere bacterial and fungal communities during the growth of Angelica sinensis seedlings cultivated in an Alpine uncultivated meadow soil

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Angelica sinensis seedlings are grown in alpine uncultivated meadow soil with rainfed agroecosystems to ensure the quality of A. sinensis after seedling transplantation. The aim was to investigate the rhizosphere bacterial and fungal communities during the growth stages of A. sinensis seedlings.

          Methods

          The bacterial and fungal communities were investigated by HiSeq sequencing of 16S and 18S rDNA, respectively.

          Results

          Proteobacteria and Bacteroidetes were bacterial dominant phyla throughout growth stages. Fungal dominant phyla varied with growth stages, dominant phyla Ascomycota and Chytridiomycota in AM5, dominant phyla Basidiomycota, Ascomycota and Zygomycota in BM5, and dominant phyla Basidiomycota and Ascomycota in CM5. There was no significant variation in the alpha-diversity of the bacterial and fungal communities, but significant variation was in the beta-diversity. We found that the variation of microbial community composition was accompanied by the changes in community function. The relative abundance of fungal pathogens increased with plant growth. We also identified the core microbes, significant-changing microbes, stage-specific microbes, and host-specific microbes. Plant weight, root length, root diameter, soil pH, rainfall, and climate temperature were the key divers to microbial community composition.

          Conclusions

          Our findings reported the variation and environmental drivers of rhizosphere bacterial and fungal communities during the growth of A. sinensis seedlings, which enhance the understanding of the rhizosphere microbial community in this habitat.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients

            Terrestrial ecosystems are receiving elevated inputs of nitrogen (N) from anthropogenic sources and understanding how these increases in N availability affect soil microbial communities is critical for predicting the associated effects on belowground ecosystems. We used a suite of approaches to analyze the structure and functional characteristics of soil microbial communities from replicated plots in two long-term N fertilization experiments located in contrasting systems. Pyrosequencing-based analyses of 16S rRNA genes revealed no significant effects of N fertilization on bacterial diversity, but significant effects on community composition at both sites; copiotrophic taxa (including members of the Proteobacteria and Bacteroidetes phyla) typically increased in relative abundance in the high N plots, with oligotrophic taxa (mainly Acidobacteria) exhibiting the opposite pattern. Consistent with the phylogenetic shifts under N fertilization, shotgun metagenomic sequencing revealed increases in the relative abundances of genes associated with DNA/RNA replication, electron transport and protein metabolism, increases that could be resolved even with the shallow shotgun metagenomic sequencing conducted here (average of 75 000 reads per sample). We also observed shifts in the catabolic capabilities of the communities across the N gradients that were significantly correlated with the phylogenetic and metagenomic responses, indicating possible linkages between the structure and functioning of soil microbial communities. Overall, our results suggest that N fertilization may, directly or indirectly, induce a shift in the predominant microbial life-history strategies, favoring a more active, copiotrophic microbial community, a pattern that parallels the often observed replacement of K-selected with r-selected plant species with elevated N.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rhizosphere microbiome assemblage is affected by plant development.

              There is a concerted understanding of the ability of root exudates to influence the structure of rhizosphere microbial communities. However, our knowledge of the connection between plant development, root exudation and microbiome assemblage is limited. Here, we analyzed the structure of the rhizospheric bacterial community associated with Arabidopsis at four time points corresponding to distinct stages of plant development: seedling, vegetative, bolting and flowering. Overall, there were no significant differences in bacterial community structure, but we observed that the microbial community at the seedling stage was distinct from the other developmental time points. At a closer level, phylum such as Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria and specific genera within those phyla followed distinct patterns associated with plant development and root exudation. These results suggested that the plant can select a subset of microbes at different stages of development, presumably for specific functions. Accordingly, metatranscriptomics analysis of the rhizosphere microbiome revealed that 81 unique transcripts were significantly (P<0.05) expressed at different stages of plant development. For instance, genes involved in streptomycin synthesis were significantly induced at bolting and flowering stages, presumably for disease suppression. We surmise that plants secrete blends of compounds and specific phytochemicals in the root exudates that are differentially produced at distinct stages of development to help orchestrate rhizosphere microbiome assemblage.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                26 March 2020
                2020
                : 8
                : e8541
                Affiliations
                [1 ]College of Life Science and Technology, College of Agronomy, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicine, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Provincial Key Lab of Aridland Crop Science, Gansu Agricultural University , Lanzhou, China
                [2 ]Pharmacy Department, Gansu University of Chinese Medicine , Dingxi, China
                [3 ]Gansu Engineering Lab of Resource Reservation and Utilization for Characteristic Chinese Medicine, Gansu Tasly Zhongtian Pharmaceutical Co., Ltd. , Dingxi, China
                Article
                8541
                10.7717/peerj.8541
                7103203
                32257632
                30eae821-9160-4e53-a655-4aa32b4e5b4f
                © 2020 An et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 29 July 2019
                : 9 January 2020
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 31560175 and 31360317
                Funded by: Provincial College Students Innovation Training
                Award ID: 201810733232
                Funded by: Scientific Research Projects of Higher School in Gansu Province
                Award ID: 2017A-033
                Funded by: SRTP of GAU
                Award ID: 20150802, 20160802, 20170924
                Funded by: Chief Expert (Y Chen) of Modern Agricultural Traditional Chinese Medicine Industry System in Gansu Province
                Award ID: GARS-ZYC-1
                Funded by: National Standardization Project of Traditional Chinese Medicine of China
                Award ID: ZYBZH-Y-GS-11
                The study was funded by the National Natural Science Foundation of China (Nos. 31560175 and 31360317), Provincial college students innovation training (201810733232), the Scientific Research Projects of Higher School in Gansu Province (2017A-033), the SRTP of GAU (20150802, 20160802, 20170924), the Chief Expert (Y Chen) of Modern Agricultural Traditional Chinese Medicine Industry System in Gansu Province (GARS-ZYC-1), and the National Standardization Project of Traditional Chinese Medicine of China (ZYBZH-Y-GS-11). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Agricultural Science
                Ecology
                Microbiology
                Plant Science

                angelica sinensis,seedlings,rhizosphere,bacteria,fungi,diversity,community function

                Comments

                Comment on this article