0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A systematic printability study of direct ink writing towards high-resolution rapid manufacturing

      , , ,
      International Journal of Extreme Manufacturing
      IOP Publishing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Direct ink writing (DIW) holds enormous potential in fabricating multiscale and multi-functional architectures by virtue of its wide range of printable materials, simple operation, and ease of rapid prototyping. Although it is well known that ink rheology and processing parameters have a direct impact on the resolution and shape of the printed objects, the underlying mechanisms of these key factors on the printability and quality of DIW technique remain poorly understood. To tackle this issue, we systematically analyzed the printability and quality through extrusion mechanism modeling and experimental validating. Hybrid non-Newtonian fluid inks were first prepared, and their rheological properties were measured. Then, finite element analysis of the whole DIW process was conducted to reveal the flow dynamics of these inks. The obtained optimal process parameters (ink rheology, applied pressure, printing speed, etc) were also validated by experiments where high-resolution (<100 μm) patterns were fabricated rapidly (>70 mm s −1). Finally, as a process research demonstration, we printed a series of microstructures and circuit systems with hybrid inks and silver inks, showing the suitability of the printable process parameters. This study provides a strong quantitative illustration of the use of DIW for the high-speed preparation of high-resolution, high-precision samples.

          Highlights

          • A systematic approach was proposed to assess the printability of direct ink writing technology.

          • The optimal printing parameters for direct ink writing were obtained based on the ink hydrodynamic analysis.

          • Numerical calculations were conducted to further develop these concepts.

          • The applicability of the printability parameters was verified through high-resolution printing experiments.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          An integrated design and fabrication strategy for entirely soft, autonomous robots.

          Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Direct Ink Writing of 3D Functional Materials

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Highly compressible 3D periodic graphene aerogel microlattices

              Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.
                Bookmark

                Author and article information

                Contributors
                Journal
                International Journal of Extreme Manufacturing
                Int. J. Extrem. Manuf.
                IOP Publishing
                2631-8644
                2631-7990
                May 16 2023
                September 01 2023
                May 16 2023
                September 01 2023
                : 5
                : 3
                : 035002
                Article
                10.1088/2631-7990/acd090
                30b129f9-f06a-4508-822c-2e5e0ce4dba4
                © 2023

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article