95
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insulin resistance determined by Homeostasis Model Assessment (HOMA) and associations with metabolic syndrome among Chinese children and teenagers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          The aim of this study is to assess the association between the degree of insulin resistance and the different components of the metabolic syndrome among Chinese children and adolescents. Moreover, to determine the cut-off values for homeostasis model assessment of insulin resistance (HOMA-IR) at MS risk.

          Methods

          3203 Chinese children aged 6 to 18 years were recruited. Anthropometric and biochemical parameters were measured. Metabolic syndrome (MS) was identified by a modified Adult Treatment Panel III (ATP III) definition. HOMA-IR index was calculated and the normal reference ranges were defined from the healthy participants. Receiver operating characteristic (ROC) analysis was used to find the optimal cutoff of HOMA-IR for diagnosis of MS.

          Results

          With the increase of insulin resistance (quintile of HOMA-IR value), the ORs of suffering MS or its related components were significantly increased. Participants in the highest quintile of HOMA-IR were about 60 times more likely to be classified with metabolic syndrome than those in the lowest quintile group. Similarly, the mean values of insulin and HOMA-IR increased with the number of MS components. The present HOMA-IR cutoff point corresponding to the 95th percentile of our healthy reference children was 3.0 for whole participants, 2.6 for children in prepubertal stage and 3.2 in pubertal period, respectively. The optimal point for diagnosis of MS was 2.3 in total participants, 1.7 in prepubertal children and 2.6 in pubertal adolescents, respectively, by ROC curve, which yielded high sensitivity and moderate specificity for a screening test. According to HOMA-IR > 3.0, the prevalence of insulin resistance in obese or MS children were 44.3% and 61.6% respectively.

          Conclusions

          Our data indicates insulin resistance is common among Chinese obese children and adolescents, and is strongly related to MS risk, therefore requiring consideration early in life. As a reliable measure of insulin resistance and assessment of MS risk, the optimal HOMA-IR cut-off points in this cohort were developed with variation regarding puberty. HOMA-IR may be useful for early evaluating insulin resistance in children and teenagers and could have a long-term benefit of preventive and diagnostic therapeutic intervention.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Glucose clamp technique: a method for quantifying insulin secretion and resistance.

          Methods for the quantification of beta-cell sensitivity to glucose (hyperglycemic clamp technique) and of tissue sensitivity to insulin (euglycemic insulin clamp technique) are described. Hyperglycemic clamp technique. The plasma glucose concentration is acutely raised to 125 mg/dl above basal levels by a priming infusion of glucose. The desired hyperglycemic plateau is subsequently maintained by adjustment of a variable glucose infusion, based on the negative feedback principle. Because the plasma glucose concentration is held constant, the glucose infusion rate is an index of glucose metabolism. Under these conditions of constant hyperglycemia, the plasma insulin response is biphasic with an early burst of insulin release during the first 6 min followed by a gradually progressive increase in plasma insulin concentration. Euglycemic insulin clamp technique. The plasma insulin concentration is acutely raised and maintained at approximately 100 muU/ml by a prime-continuous infusion of insulin. The plasma glucose concentration is held constant at basal levels by a variable glucose infusion using the negative feedback principle. Under these steady-state conditions of euglycemia, the glucose infusion rate equals glucose uptake by all the tissues in the body and is therefore a measure of tissue sensitivity to exogenous insulin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Obesity and risk of type 2 diabetes and cardiovascular disease in children and adolescents.

            Overweight/obesity continues to increase in children and adolescents, and annual obesity-related hospital costs in 6-17 yr olds have reached 127 million dollars per year. Overweight children and adolescents are now being diagnosed with impaired glucose tolerance and type 2 diabetes, and they show early signs of the insulin resistance syndrome and cardiovascular risk. Several risk factors have been identified as contributors to the development of type 2 diabetes and cardiovascular risk in youth. These factors include increased body fat and abdominal fat, insulin resistance, ethnicity (with greater risk in African-American, Hispanic, and Native American children), and onset of puberty. There is no clear explanation of how these factors increase risk, but they appear to act in an additive fashion. We hypothesize that the constellation of these risk factors may be especially problematic during the critical period of adolescent development, especially in individuals who may have compromised beta-cell function and an inability to compensate for severe insulin resistance. Therefore, the purpose of this paper is to review the pathophysiology of type 2 diabetes and cardiovascular risk in obese children and adolescents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The assessment of insulin resistance in man.

              Insulin resistance exists when a normal concentration of insulin produces a less than normal biological response. The ability to measure insulin resistance is important in order to understand the aetiopathology of Type 2 diabetes, to examine the epidemiology and to assess the effects of intervention. We assess and compare methods of measurement and have undertaken a literature review from 1966 to 2001. Quantitative estimates of insulin resistance can be obtained using model assessments, clamps or insulin infusion sensitivity tests. There is considerable variation in the complexity and labour intensity of the various methods. The most well-established methods are the euglycaemic clamp, minimal model assessment and homeostatic model assessment (HOMA). No single test is appropriate under all circumstances. There are a number of well-established tests used to measure insulin resistance: the choice of method depends on the size and type of study to be undertaken. Although the so-called 'gold-standard' test, the euglycaemic clamp, is useful for intensive physiological studies on small numbers of subjects, a simpler tool such as HOMA is more appropriate for large epidemiological studies. It is important to be aware that most techniques measure stimulated insulin resistance whereas HOMA gives an estimate of basal insulin resistance. Caution should be exercised when making comparisons between studies due to variations in infusion protocols, sampling procedures and hormone assays used in different studies.
                Bookmark

                Author and article information

                Journal
                Diabetol Metab Syndr
                Diabetol Metab Syndr
                Diabetology & Metabolic Syndrome
                BioMed Central
                1758-5996
                2013
                15 November 2013
                : 5
                : 71
                Affiliations
                [1 ]Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
                [2 ]Department of Epidemiology, Capital Institute of Pediatrics, Beijing 100020, China
                [3 ]Department of Endocrinology, First Affiliated Hospital, Shanxi Medical University, Shanxi 030001, China
                Article
                1758-5996-5-71
                10.1186/1758-5996-5-71
                3833654
                24228769
                30ae2349-f8d2-4341-9e62-74516e687ab4
                Copyright © 2013 Yin et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 July 2013
                : 9 November 2013
                Categories
                Research

                Nutrition & Dietetics
                homeostasis model assessment,insulin resistance,metabolic syndrome,children,teenagers

                Comments

                Comment on this article