3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Virtual memory CD8+ T cells restrain the viral reservoir in HIV-1-infected patients with antiretroviral therapy through derepressing KIR-mediated inhibition

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome.

          Virologic and immunologic studies were performed on five patients presenting with primary human immunodeficiency virus type 1 (HIV-1) infection. CD8+ cytotoxic T lymphocyte (CTL) precursors specific for cells expressing antigens of HIV-1 Gag, Pol, and Env were detected at or within 3 weeks of presentation in four of the five patients and were detected in all five patients by 3 to 6 months after presentation. The one patient with an absent initial CTL response had prolonged symptoms, persistent viremia, and low CD4+ T-cell count. Neutralizing antibody activity was absent at the time of presentation in all five patients. These findings suggest that cellular immunity is involved in the initial control of virus replication in primary HIV-1 infection and indicate a role for CTL in protective immunity to HIV-1 in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation.

            Highly active antiretroviral therapy (HAART) suppresses HIV-1 replication but cannot eliminate the virus because HIV-1 establishes latent infection. Interruption of HAART leads to a rapid rebound of viremia, so life-long treatment is required. Efforts to purge the latent reservoir have focused on reactivating latent proviruses without inducing global T cell activation. However, the killing of the infected cells after virus reactivation, which is essential for elimination of the reservoir, has not been assessed. Here we show that after reversal of latency in an in vitro model, infected resting CD4(+) T cells survived despite viral cytopathic effects, even in the presence of autologous cytolytic T lymphocytes (CTLs) from most patients on HAART. Antigen-specific stimulation of patient CTLs led to efficient killing of infected cells. These results demonstrate that stimulating HIV-1-specific CTLs prior to reactivating latent HIV-1 may be essential for successful eradication efforts and should be considered in future clinical trials. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors.

              It is unclear why immunological control of HIV replication is incomplete in most infected individuals. We examined here the CD8+ T cell response to HIV-infected CD4+ T cells in rare patients with immunological control of HIV. Although high frequencies of HIV-specific CD8+ T cells were present in nonprogressors and progressors, only those of nonprogressors maintained a high proliferative capacity. This proliferation was coupled to increases in perforin expression. These results indicated that nonprogressors were differentiated by increased proliferative capacity of HIV-specific CD8+ T cells linked to enhanced effector function. In addition, the relative absence of these functions in progressors may represent a mechanism by which HIV avoids immunological control.
                Bookmark

                Author and article information

                Journal
                Cellular & Molecular Immunology
                Cell Mol Immunol
                Springer Science and Business Media LLC
                1672-7681
                2042-0226
                March 24 2020
                Article
                10.1038/s41423-020-0408-9
                32210395
                30973d02-3b03-477a-a00a-526ff0d12fd5
                © 2020

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article