4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nanotechnology in drug and gene delivery

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Over the last decade, nanotechnology has widely addressed many nanomaterials in the biomedical area with an opportunity to achieve better-targeted delivery, effective treatment, and an improved safety profile. Nanocarriers have the potential property to protect the active molecule during drug delivery. Depending on the employing nanosystem, the delivery of drugs and genes has enhanced the bioavailability of the molecule at the disease site and exercised an excellent control of the molecule release. Herein, the chapter discusses various advanced nanomaterials designed to develop better nanocarrier systems used to face different diseases such as cancer, heart failure, and malaria. Furthermore, we demonstrate the great attention to the promising role of nanocarriers in ease diagnostic and biodistribution for successful clinical cancer therapy.

          Related collections

          Most cited references193

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Nano based drug delivery systems: recent developments and future prospects

          Nanomedicine and nano delivery systems are a relatively new but rapidly developing science where materials in the nanoscale range are employed to serve as means of diagnostic tools or to deliver therapeutic agents to specific targeted sites in a controlled manner. Nanotechnology offers multiple benefits in treating chronic human diseases by site-specific, and target-oriented delivery of precise medicines. Recently, there are a number of outstanding applications of the nanomedicine (chemotherapeutic agents, biological agents, immunotherapeutic agents etc.) in the treatment of various diseases. The current review, presents an updated summary of recent advances in the field of nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and application of nanomaterials in improving both the efficacy of novel and old drugs (e.g., natural products) and selective diagnosis through disease marker molecules. The opportunities and challenges of nanomedicines in drug delivery from synthetic/natural sources to their clinical applications are also discussed. In addition, we have included information regarding the trends and perspectives in nanomedicine area.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Drug delivery and nanoparticles: Applications and hazards

            The use of nanotechnology in medicine and more specifically drug delivery is set to spread rapidly. Currently many substances are under investigation for drug delivery and more specifically for cancer therapy. Interestingly pharmaceutical sciences are using nanoparticles to reduce toxicity and side effects of drugs and up to recently did not realize that carrier systems themselves may impose risks to the patient. The kind of hazards that are introduced by using nanoparticles for drug delivery are beyond that posed by conventional hazards imposed by chemicals in classical delivery matrices. For nanoparticles the knowledge on particle toxicity as obtained in inhalation toxicity shows the way how to investigate the potential hazards of nanoparticles. The toxicology of particulate matter differs from toxicology of substances as the composing chemical(s) may or may not be soluble in biological matrices, thus influencing greatly the potential exposure of various internal organs. This may vary from a rather high local exposure in the lungs and a low or neglectable exposure for other organ systems after inhalation. However, absorbed species may also influence the potential toxicity of the inhaled particles. For nanoparticles the situation is different as their size opens the potential for crossing the various biological barriers within the body. From a positive viewpoint, especially the potential to cross the blood brain barrier may open new ways for drug delivery into the brain. In addition, the nanosize also allows for access into the cell and various cellular compartments including the nucleus. A multitude of substances are currently under investigation for the preparation of nanoparticles for drug delivery, varying from biological substances like albumin, gelatine and phospholipids for liposomes, and more substances of a chemical nature like various polymers and solid metal containing nanoparticles. It is obvious that the potential interaction with tissues and cells, and the potential toxicity, greatly depends on the actual composition of the nanoparticle formulation. This paper provides an overview on some of the currently used systems for drug delivery. Besides the potential beneficial use also attention is drawn to the questions how we should proceed with the safety evaluation of the nanoparticle formulations for drug delivery. For such testing the lessons learned from particle toxicity as applied in inhalation toxicology may be of use. Although for pharmaceutical use the current requirements seem to be adequate to detect most of the adverse effects of nanoparticle formulations, it can not be expected that all aspects of nanoparticle toxicology will be detected. So, probably additional more specific testing would be needed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability

              A drawback of the current mRNA-lipid nanoparticle (LNP) COVID-19 vaccines is that they have to be stored at (ultra)low temperatures. Understanding the root cause of the instability of these vaccines may help to rationally improve mRNA-LNP product stability and thereby ease the temperature conditions for storage. In this review we discuss proposed structures of mRNA-LNPs, factors that impact mRNA-LNP stability and strategies to optimize mRNA-LNP product stability. Analysis of mRNA-LNP structures reveals that mRNA, the ionizable cationic lipid and water are present in the LNP core. The neutral helper lipids are mainly positioned in the outer, encapsulating, wall. mRNA hydrolysis is the determining factor for mRNA-LNP instability. It is currently unknown whether water in the LNP core can interact with the mRNA and to what extent the degradation prone sites of mRNA are protected through a coat of ionizable cationic lipids. To improve the stability of mRNA-LNP vaccines, optimization of the mRNA nucleotide composition should be prioritized. Secondly, a better understanding of the milieu the mRNA is exposed to in the core of LNPs may help to rationalize adjustments to the LNP structure to preserve mRNA integrity. Moreover, drying techniques, such as lyophilization, are promising options still to be explored.
                Bookmark

                Author and article information

                Contributors
                salma.hamimed@fsb.rnu.tn
                Journal
                Naunyn Schmiedebergs Arch Pharmacol
                Naunyn Schmiedebergs Arch Pharmacol
                Naunyn-Schmiedeberg's Archives of Pharmacology
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0028-1298
                1432-1912
                4 May 2022
                : 1-19
                Affiliations
                [1 ]GRID grid.419508.1, ISNI 0000 0001 2295 3249, Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, , University of Carthage, ; CP 7021 Jarzouna, Tunisia
                [2 ]GRID grid.442548.b, ISNI 0000 0004 0524 1858, Departement of Biology, Faculty of Exact Sciences, Natural and Life Sciences, , Chaikh Larbi Tebessi University, ; Tebessa, Algeria
                [3 ]GRID grid.462352.4, ISNI 0000 0004 0492 8877, Laboratory of Energy and Matter for Development of Nuclear Sciences (LR16CNSTN02), , National Center for Nuclear Sciences and Technology (CNSTN), ; Sidi Thabet Technopark, 2020 Ariana, Tunisia
                Author information
                http://orcid.org/0000-0002-2649-6345
                Article
                2245
                10.1007/s00210-022-02245-z
                9064725
                35505234
                308f09c6-a345-4da8-abdb-0567c1fcb221
                © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 28 January 2022
                : 21 April 2022
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                cancer therapy,drug delivery,heart diseases,nanomaterials,optical properties,gene therapy

                Comments

                Comment on this article