1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Flow criticality governs leading-edge-vortex initiation on finite wings in unsteady flow

      , , ,
      Journal of Fluid Mechanics
      Cambridge University Press (CUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Leading-edge-vortex (LEV) formation often characterizes the unsteady flows past airfoils and wings. Recent research showed that initiation of LEV formation on airfoils in two-dimensional flow is closely tied to the criticality of the so-called leading-edge suction parameter (LESP). To characterize the LEV initiation on wings in three-dimensional flow, a large set of pitching wings was studied using Reynolds-averaged Navier–Stokes computations (computational fluid dynamics, CFD). The CFD results showed that the pitch angle and spanwise location for LEV initiation varied widely between the different wings. The same cases were also analysed using an unsteady vortex-lattice method (UVLM), which assumes attached flow. Low-order prediction of LEV initiation is assumed to occur at the pitch angle when the UVLM-calculated LESP at any point on the wing span first becomes equal to the pre-determined critical LESP for the airfoil. For all the cases, the predicted pitch angles and spanwise locations for LEV initiation from the low-order method agreed excellently with the corresponding CFD predictions. These observations show that LEV initiation on finite wings is governed by criticality of leading-edge suction, enabling the prediction of LEV initiation on an unsteady finite wing using attached-flow wing theory and the critical LESP values for the airfoil sections.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: not found
          • Article: not found

          Leading-edge vortices in insect flight

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency.

            Dimensionless numbers are important in biomechanics because their constancy can imply dynamic similarity between systems, despite possible differences in medium or scale. A dimensionless parameter that describes the tail or wing kinematics of swimming and flying animals is the Strouhal number, St = fA/U, which divides stroke frequency (f) and amplitude (A) by forward speed (U). St is known to govern a well-defined series of vortex growth and shedding regimes for airfoils undergoing pitching and heaving motions. Propulsive efficiency is high over a narrow range of St and usually peaks within the interval 0.2 < St < 0.4 (refs 3-8). Because natural selection is likely to tune animals for high propulsive efficiency, we expect it to constrain the range of St that animals use. This seems to be true for dolphins, sharks and bony fish, which swim at 0.2 < St < 0.4. Here we show that birds, bats and insects also converge on the same narrow range of St, but only when cruising. Tuning cruise kinematics to optimize St therefore seems to be a general principle of oscillatory lift-based propulsion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rotational accelerations stabilize leading edge vortices on revolving fly wings.

              The aerodynamic performance of hovering insects is largely explained by the presence of a stably attached leading edge vortex (LEV) on top of their wings. Although LEVs have been visualized on real, physically modeled, and simulated insects, the physical mechanisms responsible for their stability are poorly understood. To gain fundamental insight into LEV stability on flapping fly wings we expressed the Navier-Stokes equations in a rotating frame of reference attached to the wing's surface. Using these equations we show that LEV dynamics on flapping wings are governed by three terms: angular, centripetal and Coriolis acceleration. Our analysis for hovering conditions shows that angular acceleration is proportional to the inverse of dimensionless stroke amplitude, whereas Coriolis and centripetal acceleration are proportional to the inverse of the Rossby number. Using a dynamically scaled robot model of a flapping fruit fly wing to systematically vary these dimensionless numbers, we determined which of the three accelerations mediate LEV stability. Our force measurements and flow visualizations indicate that the LEV is stabilized by the ;quasi-steady' centripetal and Coriolis accelerations that are present at low Rossby number and result from the propeller-like sweep of the wing. In contrast, the unsteady angular acceleration that results from the back and forth motion of a flapping wing does not appear to play a role in the stable attachment of the LEV. Angular acceleration is, however, critical for LEV integrity as we found it can mediate LEV spiral bursting, a high Reynolds number effect. Our analysis and experiments further suggest that the mechanism responsible for LEV stability is not dependent on Reynolds number, at least over the range most relevant for insect flight (100
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Fluid Mechanics
                J. Fluid Mech.
                Cambridge University Press (CUP)
                0022-1120
                1469-7645
                March 10 2021
                January 08 2021
                March 10 2021
                : 910
                Article
                10.1017/jfm.2020.896
                3076ec77-5e45-49bf-b25d-e027f6b49e94
                © 2021

                https://www.cambridge.org/core/terms

                History

                Comments

                Comment on this article