6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spin-orbit-locked hyperbolic polariton vortices carrying reconfigurable topological charges

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The topological features of optical vortices have been opening opportunities for free-space and on-chip photonic technologies, e.g., for multiplexed optical communications and robust information transport. In a parallel but disjoint effort, polar anisotropic van der Waals nanomaterials supporting hyperbolic phonon polaritons (HP 2s) have been leveraged to drastically boost light-matter interactions. So far HP 2 studies have been mainly focusing on the control of their amplitude and scale features. Here we report the generation and observation of mid-infrared hyperbolic polariton vortices (HP 2Vs) associated with reconfigurable topological charges. Spiral-shaped gold disks coated with a flake of hexagonal boron nitride are exploited to tailor spin–orbit interactions and realise deeply subwavelength HP 2Vs. The complex interplay between excitation spin, spiral geometry and HP 2 dispersion enables robust reconfigurability of the associated topological charges. Our results reveal unique opportunities to extend the application of HP 2s into topological photonics, quantum information processing by integrating these phenomena with single-photon emitters, robust on-chip optical applications, sensing and nanoparticle manipulation.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Occurrence of the potent mutagens 2- nitrobenzanthrone and 3-nitrobenzanthrone in fine airborne particles

          Polycyclic aromatic compounds (PACs) are known due to their mutagenic activity. Among them, 2-nitrobenzanthrone (2-NBA) and 3-nitrobenzanthrone (3-NBA) are considered as two of the most potent mutagens found in atmospheric particles. In the present study 2-NBA, 3-NBA and selected PAHs and Nitro-PAHs were determined in fine particle samples (PM 2.5) collected in a bus station and an outdoor site. The fuel used by buses was a diesel-biodiesel (96:4) blend and light-duty vehicles run with any ethanol-to-gasoline proportion. The concentrations of 2-NBA and 3-NBA were, on average, under 14.8 µg g−1 and 4.39 µg g−1, respectively. In order to access the main sources and formation routes of these compounds, we performed ternary correlations and multivariate statistical analyses. The main sources for the studied compounds in the bus station were diesel/biodiesel exhaust followed by floor resuspension. In the coastal site, vehicular emission, photochemical formation and wood combustion were the main sources for 2-NBA and 3-NBA as well as the other PACs. Incremental lifetime cancer risk (ILCR) were calculated for both places, which presented low values, showing low cancer risk incidence although the ILCR values for the bus station were around 2.5 times higher than the ILCR from the coastal site.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            U1 snRNP regulates cancer cell migration and invasion in vitro

            Stimulated cells and cancer cells have widespread shortening of mRNA 3’-untranslated regions (3’UTRs) and switches to shorter mRNA isoforms due to usage of more proximal polyadenylation signals (PASs) in introns and last exons. U1 snRNP (U1), vertebrates’ most abundant non-coding (spliceosomal) small nuclear RNA, silences proximal PASs and its inhibition with antisense morpholino oligonucleotides (U1 AMO) triggers widespread premature transcription termination and mRNA shortening. Here we show that low U1 AMO doses increase cancer cells’ migration and invasion in vitro by up to 500%, whereas U1 over-expression has the opposite effect. In addition to 3’UTR length, numerous transcriptome changes that could contribute to this phenotype are observed, including alternative splicing, and mRNA expression levels of proto-oncogenes and tumor suppressors. These findings reveal an unexpected role for U1 homeostasis (available U1 relative to transcription) in oncogenic and activated cell states, and suggest U1 as a potential target for their modulation.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              2D materials and van der Waals heterostructures

                Bookmark

                Author and article information

                Contributors
                Journal
                eLight
                eLight
                Springer Science and Business Media LLC
                2662-8643
                December 2022
                July 18 2022
                December 2022
                : 2
                : 1
                Article
                10.1186/s43593-022-00018-y
                3058b8c5-6beb-4182-a36b-4a4664d5536a
                © 2022

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article