1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High-throughput screening carbon and nitrogen sources to promote growth and sporulation in Rhizopus arrhizus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rhizopus arrhizus is a saprotrophic, sometimes clinically- and industrially-relevant mold ( Mucorales) and distributed worldwide, suggesting it can assimilate a broad spectrum of substrates. Here, 69 strains of R. arrhizus were investigated by using the Biolog FF MicroPlate for the profiles of utilizing 95 carbon and nitrogen substrates. The study showed that most R. arrhizus strains were similar in average well color development (AWCD) and substrate richness (SR). Nevertheless, 13 strains were unique in principal component analyses, heatmap, AWCD, and SR analyses, which may imply a niche differentiation within R. arrhizus. The species R. arrhizus was able to utilize all the 95 carbon and nitrogen substrates, consistent with the hypothesis of a great metabolic diversity. It possessed a substrate preference of alcohols, and seven substrates were most frequently utilized, with N-acetyl- d-galactosamine and l-phenylalanine ranking at the top of the list. Eight substrates, especially l-arabinose and xylitol, were capable of promoting sporulation and being applied for rejuvenating degenerated strains. By phenotyping R. arrhizus strains in carbon and nitrogen assimilation capacity, this study revealed the extent of intra-specific variability and laid a foundation for estimating optimum substrates that may be useful for industrial applications.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s13568-024-01733-0.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data

          Summary: The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Availability and implementation: Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl. Contact: peter@biomatters.com
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            DrugBank 5.0: a major update to the DrugBank database for 2018

            Abstract DrugBank (www.drugbank.ca) is a web-enabled database containing comprehensive molecular information about drugs, their mechanisms, their interactions and their targets. First described in 2006, DrugBank has continued to evolve over the past 12 years in response to marked improvements to web standards and changing needs for drug research and development. This year’s update, DrugBank 5.0, represents the most significant upgrade to the database in more than 10 years. In many cases, existing data content has grown by 100% or more over the last update. For instance, the total number of investigational drugs in the database has grown by almost 300%, the number of drug-drug interactions has grown by nearly 600% and the number of SNP-associated drug effects has grown more than 3000%. Significant improvements have been made to the quantity, quality and consistency of drug indications, drug binding data as well as drug-drug and drug-food interactions. A great deal of brand new data have also been added to DrugBank 5.0. This includes information on the influence of hundreds of drugs on metabolite levels (pharmacometabolomics), gene expression levels (pharmacotranscriptomics) and protein expression levels (pharmacoprotoemics). New data have also been added on the status of hundreds of new drug clinical trials and existing drug repurposing trials. Many other important improvements in the content, interface and performance of the DrugBank website have been made and these should greatly enhance its ease of use, utility and potential applications in many areas of pharmacological research, pharmaceutical science and drug education.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap

              The Principal Component Analysis (PCA) is a widely used method of reducing the dimensionality of high-dimensional data, often followed by visualizing two of the components on the scatterplot. Although widely used, the method is lacking an easy-to-use web interface that scientists with little programming skills could use to make plots of their own data. The same applies to creating heatmaps: it is possible to add conditional formatting for Excel cells to show colored heatmaps, but for more advanced features such as clustering and experimental annotations, more sophisticated analysis tools have to be used. We present a web tool called ClustVis that aims to have an intuitive user interface. Users can upload data from a simple delimited text file that can be created in a spreadsheet program. It is possible to modify data processing methods and the final appearance of the PCA and heatmap plots by using drop-down menus, text boxes, sliders etc. Appropriate defaults are given to reduce the time needed by the user to specify input parameters. As an output, users can download PCA plot and heatmap in one of the preferred file formats. This web server is freely available at http://biit.cs.ut.ee/clustvis/.
                Bookmark

                Author and article information

                Contributors
                liuxy@sdnu.edu.cn
                Journal
                AMB Express
                AMB Express
                AMB Express
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                2191-0855
                28 June 2024
                28 June 2024
                2024
                : 14
                : 76
                Affiliations
                [1 ]College of Life Sciences, Shandong Normal University, ( https://ror.org/01wy3h363) Jinan, 250358 China
                [2 ]State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, ( https://ror.org/04xv2pc41) Beijing, 100083 China
                [3 ]GRID grid.9227.e, ISNI 0000000119573309, State Key Laboratory of Mycology, Institute of Microbiology, , Chinese Academy of Sciences, ; Beijing, 100101 China
                [4 ]Graduate School, China Pharmaceutical University, ( https://ror.org/01sfm2718) Nanjing, 211198 China
                [5 ]School of Civil Engineering and Architecture, Anhui University of Technology, ( https://ror.org/02qdtrq21) Ma’anshan, 243002 China
                [6 ]Department of Ecology and Evolutionary Biology, University of Michigan, ( https://ror.org/00jmfr291) Ann Arbor, MI 48109-1048 USA
                Author information
                http://orcid.org/0000-0003-2938-5613
                Article
                1733
                10.1186/s13568-024-01733-0
                11213844
                38942930
                304cf6d1-c3d4-4cc6-99d2-5bf538b32a18
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 4 June 2024
                : 19 June 2024
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 31970009
                Award ID: 32170012
                Award Recipient :
                Categories
                Original Article
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2024

                Biotechnology
                rhizopus oryzae,rhizopus delemar,fungal physiology,fungal phenotype,biolog ff microplate

                Comments

                Comment on this article