16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Listeriolysin O: A phagosome-specific cytolysin revisited

      1 , 1 , 2 , 3
      Cellular Microbiology
      Wiley

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Listeriolysin O (LLO) is an essential determinant of Listeria monocytogenes pathogenesis that mediates the escape of L. monocytogenes from host cell vacuoles, thereby allowing replication in the cytosol without causing appreciable cell death. As a member of the cholesterol-dependent cytolysin (CDC) family of pore-forming toxins, LLO is unique in that it is secreted by a facultative intracellular pathogen, whereas all other CDCs are produced by pathogens that are largely extracellular. Replacement of LLO with other CDCs results in strains that are extremely cytotoxic and 10,000-fold less virulent in mice. LLO has structural and regulatory features that allow it to function intracellularly without causing cell death, most of which map to a unique N-terminal region of LLO referred to as the PEST-like sequence. Yet, while LLO has unique properties required for its intracellular site of action, extracellular LLO, like other CDCs, affects cells in a myriad of ways. Because all CDCs form pores in cholesterol-containing membranes that lead to rapid Ca 2+ influx and K + efflux, they consequently trigger a wide range of host cell responses, including MAPK activation, histone modification, and caspase-1 activation. There is no debate that extracellular LLO, like all other CDCs, can stimulate multiple cellular activities, but the primary question we wish to address in this perspective is whether these activities contribute to L. monocytogenes pathogenesis.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Nucleotide signalling during inflammation.

          Inflammatory conditions are associated with the extracellular release of nucleotides, particularly ATP. In the extracellular compartment, ATP predominantly functions as a signalling molecule through the activation of purinergic P2 receptors. Metabotropic P2Y receptors are G-protein-coupled, whereas ionotropic P2X receptors are ATP-gated ion channels. Here we discuss how signalling events through P2 receptors alter the outcomes of inflammatory or infectious diseases. Recent studies implicate a role for P2X/P2Y signalling in mounting appropriate inflammatory responses critical for host defence against invading pathogens or tumours. Conversely, P2X/P2Y signalling can promote chronic inflammation during ischaemia and reperfusion injury, inflammatory bowel disease or acute and chronic diseases of the lungs. Although nucleotide signalling has been used clinically in patients before, research indicates an expanding field of opportunities for specifically targeting individual P2 receptors for the treatment of inflammatory or infectious diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PEST sequences and regulation by proteolysis.

            In 1986, we proposed that polypeptide sequences enriched in proline (P), glutamic acid (E), serine (S) and threonine (T) target proteins for rapid destruction. For much of the past decade there were only sporadic experimental tests of the hypothesis. This situation changed markedly during the past two years with a number of papers providing strong evidence that PEST regions do, in fact, serve as proteolytic signals. Here, we briefly review the properties of PEST regions and some interesting examples of the conditional nature of such signals. Most of the article, however, focuses on recent experimental support for the hypothesis and on mechanisms responsible for the rapid degradation of proteins that contain PEST regions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival.

              Many pathogenic organisms produce pore-forming toxins as virulence factors. Target cells however mount a response to such membrane damage. Here we show that toxin-induced membrane permeabilization leads to a decrease in cytoplasmic potassium, which promotes the formation of a multiprotein oligomeric innate immune complex, called the inflammasome, and the activation of caspase-1. Further, we find that when rendered proteolytic in this context caspase-1 induces the activation of the central regulators of membrane biogenesis, the Sterol Regulatory Element Binding Proteins (SREBPs), which in turn promote cell survival upon toxin challenge possibly by facilitating membrane repair. This study highlights that, in addition to its well-established role in triggering inflammation via the processing of the precursor forms of interleukins, caspase-1 has a broader role, in particular linking the intracellular ion composition to lipid metabolic pathways, membrane biogenesis, and survival.
                Bookmark

                Author and article information

                Journal
                Cellular Microbiology
                Cellular Microbiology
                Wiley
                14625814
                March 2019
                March 2019
                January 15 2019
                : 21
                : 3
                : e12988
                Affiliations
                [1 ]Graduate Group in Microbiology; University of California, Berkeley; Berkeley California
                [2 ]Department of Molecular and Cell Biology; University of California, Berkeley; Berkeley California
                [3 ]Department of Plant and Microbial Biology; University of California, Berkeley; Berkeley California
                Article
                10.1111/cmi.12988
                6779163
                30511471
                303f1489-2c39-4055-8e16-9965d4e5a39a
                © 2019

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article