17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quickly identifying people at risk of opioid use disorder in emergency departments: trade-offs between a machine learning approach and a simple EHR flag strategy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives

          Emergency departments (EDs) are an important point of contact for people with opioid use disorder (OUD). Universal screening for OUD is costly and often infeasible. Evidence on effective, selective screening is needed. We assessed the feasibility of using a risk factor-based machine learning model to identify OUD quickly among patients presenting in EDs.

          Design/settings/participants

          In this cohort study, all ED visits between January 2016 and March 2018 for patients aged 12 years and older were identified from electronic health records (EHRs) data from a large university health system. First, logistic regression modelling was used to describe and elucidate the associations between patient demographic and clinical characteristics and diagnosis of OUD. Second, a Gradient Boosting Classifier was applied to develop a predictive model to identify patients at risk of OUD. The predictive performance of the Gradient Boosting algorithm was assessed using F1 scores and area under the curve (AUC).

          Outcome

          The primary outcome was the diagnosis of OUD.

          Results

          Among 345 728 patient ED visits (mean (SD) patient age, 49.4 (21.0) years; 210 045 (60.8%) female), 1.16% had a diagnosis of OUD. Bivariate analyses indicated that history of OUD was the strongest predictor of current OUD (OR=13.4, CI: 11.8 to 15.1). When history of OUD was excluded in multivariate models, baseline use of medications for OUD (OR=3.4, CI: 2.9 to 4.0) and white race (OR=2.9, CI: 2.6 to 3.3) were the strongest predictors. The best Gradient Boosting model achieved an AUC of 0.71, accuracy of 0.96 but only 0.45 sensitivity.

          Conclusions

          Patients who present at the ED with OUD are high-need patients who are typically smokers with psychiatric, chronic pain and substance use disorders. A machine learning model did not improve predictive ability. A quick review of a patient’s EHR for history of OUD is an efficient strategy to identify those who are currently at greatest risk of OUD.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          SMOTE: Synthetic Minority Over-sampling Technique

          An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of ``normal'' examples with only a small percentage of ``abnormal'' or ``interesting'' examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Greedy function approximation: A gradient boosting machine.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data.

              Implementation of the International Statistical Classification of Disease and Related Health Problems, 10th Revision (ICD-10) coding system presents challenges for using administrative data. Recognizing this, we conducted a multistep process to develop ICD-10 coding algorithms to define Charlson and Elixhauser comorbidities in administrative data and assess the performance of the resulting algorithms. ICD-10 coding algorithms were developed by "translation" of the ICD-9-CM codes constituting Deyo's (for Charlson comorbidities) and Elixhauser's coding algorithms and by physicians' assessment of the face-validity of selected ICD-10 codes. The process of carefully developing ICD-10 algorithms also produced modified and enhanced ICD-9-CM coding algorithms for the Charlson and Elixhauser comorbidities. We then used data on in-patients aged 18 years and older in ICD-9-CM and ICD-10 administrative hospital discharge data from a Canadian health region to assess the comorbidity frequencies and mortality prediction achieved by the original ICD-9-CM algorithms, the enhanced ICD-9-CM algorithms, and the new ICD-10 coding algorithms. Among 56,585 patients in the ICD-9-CM data and 58,805 patients in the ICD-10 data, frequencies of the 17 Charlson comorbidities and the 30 Elixhauser comorbidities remained generally similar across algorithms. The new ICD-10 and enhanced ICD-9-CM coding algorithms either matched or outperformed the original Deyo and Elixhauser ICD-9-CM coding algorithms in predicting in-hospital mortality. The C-statistic was 0.842 for Deyo's ICD-9-CM coding algorithm, 0.860 for the ICD-10 coding algorithm, and 0.859 for the enhanced ICD-9-CM coding algorithm, 0.868 for the original Elixhauser ICD-9-CM coding algorithm, 0.870 for the ICD-10 coding algorithm and 0.878 for the enhanced ICD-9-CM coding algorithm. These newly developed ICD-10 and ICD-9-CM comorbidity coding algorithms produce similar estimates of comorbidity prevalence in administrative data, and may outperform existing ICD-9-CM coding algorithms.
                Bookmark

                Author and article information

                Journal
                BMJ Open
                BMJ Open
                bmjopen
                bmjopen
                BMJ Open
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2044-6055
                2022
                14 September 2022
                : 12
                : 9
                : e059414
                Affiliations
                [1 ]departmentDivision of Pharmaceutical Outcomes and Policy , University of North Carolina at Chapel Hill Eshelman School of Pharmacy , Chapel Hill, North Carolina, USA
                [2 ]departmentDepartment of Psychiatry , University of North Carolina at Chapel Hill School of Medicine , Chapel Hill, North Carolina, USA
                Author notes
                [Correspondence to ] Izabela E Annis; izabela@ 123456unc.edu
                Author information
                http://orcid.org/0000-0002-5011-3471
                Article
                bmjopen-2021-059414
                10.1136/bmjopen-2021-059414
                9476155
                36104124
                302b53f7-be8f-4a0e-8ab1-7172278d00c4
                © Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See:  http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 30 November 2021
                : 15 August 2022
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100005561, North Carolina Department of Health and Human Services;
                Award ID: N/A
                Categories
                Emergency Medicine
                1506
                1691
                Original research
                Custom metadata
                unlocked

                Medicine
                substance misuse,statistics & research methods,accident & emergency medicine
                Medicine
                substance misuse, statistics & research methods, accident & emergency medicine

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content137

                Cited by4

                Most referenced authors554