1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Aptamer-based nanointerferometer enables amplification-free ultrasensitive detection and differentiation of SARS-CoV-2 variants

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The state-of-the-art SARS-CoV-2 detection methods include qRT-PCR and antibody-based lateral flow assay (LFA) point-of-care tests. Despite the high sensitivity and selectivity, qRT-PCR is slow, expensive and needs well-trained operators. On the other extreme, LFA suffers from low sensitivity albeit its fast detection speed, low detection cost and ease of use. Therefore, the continuing COVID-19 pandemic calls for a SARS-CoV-2 detection method that is rapid, convenient and cost-effective without compromise in sensitivity. Here we provide a proof-of-principle demonstration of an optimized aptamer-based nanointerferometer that enables rapid and amplification-free detection of SARS-CoV-2 spike protein-coated pseudovirus directly from human saliva with the limit of detection (LOD) of about 400 copies per mL. This LOD is on par with that of qRT-PCR, making it 1000 to 100,000-fold more sensitive than commercial LFA tests. Using various combinations of negative selections during the screens for the aptamer targeting the receptor binding domain of the spike protein of SARS-CoV-2, we isolated two aptamers that can distinguish the Omicron and Delta variants. Integrating these two aptamers with LFA strips or the nanointerferometer sensors allows both detection and differentiation of the Omicron and Delta variants which has the potential to realize rapid triage of patients infected different SARS-CoV-2 variants.

          Graphical abstract

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor

          A new and highly pathogenic coronavirus (severe acute respiratory syndrome coronavirus-2, SARS-CoV-2) caused an outbreak in Wuhan city, Hubei province, China, starting from December 2019 that quickly spread nationwide and to other countries around the world1-3. Here, to better understand the initial step of infection at an atomic level, we determined the crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 bound to the cell receptor ACE2. The overall ACE2-binding mode of the SARS-CoV-2 RBD is nearly identical to that of the SARS-CoV RBD, which also uses ACE2 as the cell receptor4. Structural analysis identified residues in the SARS-CoV-2 RBD that are essential for ACE2 binding, the majority of which either are highly conserved or share similar side chain properties with those in the SARS-CoV RBD. Such similarity in structure and sequence strongly indicate convergent evolution between the SARS-CoV-2 and SARS-CoV RBDs for improved binding to ACE2, although SARS-CoV-2 does not cluster within SARS and SARS-related coronaviruses1-3,5. The epitopes of two SARS-CoV antibodies that target the RBD are also analysed for binding to the SARS-CoV-2 RBD, providing insights into the future identification of cross-reactive antibodies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2

            ABSTRACT Pseudoviruses are useful virological tools because of their safety and versatility, especially for emerging and re-emerging viruses. Due to its high pathogenicity and infectivity and the lack of effective vaccines and therapeutics, live SARS-CoV-2 has to be handled under biosafety level 3 conditions, which has hindered the development of vaccines and therapeutics. Based on a VSV pseudovirus production system, a pseudovirus-based neutralization assay has been developed for evaluating neutralizing antibodies against SARS-CoV-2 in biosafety level 2 facilities. The key parameters for this assay were optimized, including cell types, cell numbers, virus inoculum. When tested against the SARS-CoV-2 pseudovirus, SARS-CoV-2 convalescent patient sera showed high neutralizing potency, which underscore its potential as therapeutics. The limit of detection for this assay was determined as 22.1 and 43.2 for human and mouse serum samples respectively using a panel of 120 negative samples. The cutoff values were set as 30 and 50 for human and mouse serum samples, respectively. This assay showed relatively low coefficient of variations with 15.9% and 16.2% for the intra- and inter-assay analyses respectively. Taken together, we established a robust pseudovirus-based neutralization assay for SARS-CoV-2 and are glad to share pseudoviruses and related protocols with the developers of vaccines or therapeutics to fight against this lethal virus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aptamers: an emerging class of molecules that rival antibodies in diagnostics.

              Antibodies, the most popular class of molecules providing molecular recognition needs for a wide range of applications, have been around for more than three decades. As a result, antibodies have made substantial contributions toward the advancement of diagnostic assays and have become indispensable in most diagnostic tests that are used routinely in clinics today. The development of the systematic evolution of ligands by exponential enrichment (SELEX) process, however, made possible the isolation of oligonucleotide sequences with the capacity to recognize virtually any class of target molecules with high affinity and specificity. These oligonucleotide sequences, referred to as "aptamers", are beginning to emerge as a class of molecules that rival antibodies in both therapeutic and diagnostic applications. Aptamers are different from antibodies, yet they mimic properties of antibodies in a variety of diagnostic formats. The demand for diagnostic assays to assist in the management of existing and emerging diseases is increasing, and aptamers could potentially fulfill molecular recognition needs in those assays. Compared with the bellwether antibody technology, aptamer research is still in its infancy, but it is progressing at a fast pace. The potential of aptamers may be realized in the near future in the form of aptamer-based diagnostic products in the market. In such products, aptamers may play a key role either in conjunction with, or in place of, antibodies. It is also likely that existing diagnostic formats may change according to the need to better harness the unique properties of aptamers.
                Bookmark

                Author and article information

                Journal
                Anal Chim Acta
                Anal Chim Acta
                Analytica Chimica Acta
                Elsevier B.V.
                0003-2670
                1873-4324
                11 April 2023
                11 April 2023
                : 341207
                Affiliations
                [a ]State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
                [b ]Center for Life Sciences, Beijing, 100871, China
                [c ]State Key Laboratory of Protein and Plant Gene Research, And Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
                [d ]Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, China
                [e ]Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China
                [f ]School of Integrated Circuits, Guangdong University of Technology, Guangzhou, 510006, China
                [g ]College of Physics and Electronic Science, Hubei Normal University, Hubei, 435002, China
                [h ]School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
                Author notes
                []Corresponding author. State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
                [∗∗ ]Corresponding author.
                [∗∗∗ ]Corresponding author. Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, China.
                [∗∗∗∗ ]Corresponding author.
                Article
                S0003-2670(23)00428-2 341207
                10.1016/j.aca.2023.341207
                10085716
                2ff70e74-8b8a-471c-8f2c-68b85d422209
                © 2023 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 1 December 2022
                : 7 March 2023
                : 10 April 2023
                Categories
                Article

                Analytical chemistry
                aptamer selection,nanointerferometer,sars-cov-2 detection and differentiation

                Comments

                Comment on this article