36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of adiponectin on bovine granulosa cell steroidogenesis, oocyte maturation and embryo development

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Adiponectin is an adipokine, mainly produced by adipose tissue. It regulates several reproductive processes. The protein expression of the adiponectin system (adiponectin, its receptors, AdipoR1 and AdipoR2 and the APPL1 adaptor) in bovine ovary and its role on ovarian cells and embryo, remain however to be determined.

          Methods

          Here, we identified the adiponectin system in bovine ovarian cells and embryo using RT-PCR, immunoblotting and immunohistochemistry. Furthermore, we investigated in vitro the effects of recombinant human adiponectin (10 micro g/mL) on proliferation of granulosa cells (GC) measured by [3H] thymidine incorporation, progesterone and estradiol secretions measured by radioimmunoassay in the culture medium of GC, nuclear oocyte maturation and early embryo development.

          Results

          We show that the mRNAs and proteins for the adiponectin system are present in bovine ovary (small and large follicles and corpus luteum) and embryo. Adiponectin, AdipoR1 and AdipoR2 were more precisely localized in oocyte, GC and theca cells. Adiponectin increased IGF-1 10(-8) M-induced GC proliferation (P < 0.01) but not basal or insulin 10(-8) M-induced proliferation. Additionally, adiponectin decreased insulin 10(-8) M-induced, but not basal or IGF-1 10(-8) M-induced secretions of progesterone (P < 0.01) and estradiol (P < 0.05) by GC. This decrease in insulin-induced steroidogenesis was associated with a decrease in ERK1/2 MAPK phosphorylation in GC pre-treated with adiponectin. Finally, addition of adiponectin during in vitro maturation affected neither the percentage of oocyte in metaphase-II nor 48-h cleavage and blastocyst day 8 rates.

          Conclusions

          In bovine species, adiponectin decreased insulin-induced steroidogenesis and increased IGF-1-induced proliferation of cultured GC through a potential involvement of ERK1/2 MAPK pathway, whereas it did not modify oocyte maturation and embryo development in vitro.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Cloning of adiponectin receptors that mediate antidiabetic metabolic effects.

          Adiponectin (also known as 30-kDa adipocyte complement-related protein; Acrp30) is a hormone secreted by adipocytes that acts as an antidiabetic and anti-atherogenic adipokine. Levels of adiponectin in the blood are decreased under conditions of obesity, insulin resistance and type 2 diabetes. Administration of adiponectin causes glucose-lowering effects and ameliorates insulin resistance in mice. Conversely, adiponectin-deficient mice exhibit insulin resistance and diabetes. This insulin-sensitizing effect of adiponectin seems to be mediated by an increase in fatty-acid oxidation through activation of AMP kinase and PPAR-alpha. Here we report the cloning of complementary DNAs encoding adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) by expression cloning. AdipoR1 is abundantly expressed in skeletal muscle, whereas AdipoR2 is predominantly expressed in the liver. These two adiponectin receptors are predicted to contain seven transmembrane domains, but to be structurally and functionally distinct from G-protein-coupled receptors. Expression of AdipoR1/R2 or suppression of AdipoR1/R2 expression by small-interfering RNA supports our conclusion that they serve as receptors for globular and full-length adiponectin, and that they mediate increased AMP kinase and PPAR-alpha ligand activities, as well as fatty-acid oxidation and glucose uptake by adiponectin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Obesity and the polycystic ovary syndrome.

            The polycystic ovary syndrome (PCOS) is a condition characterized by hyperandrogenism and chronic oligo-anovulation. However, many features of the metabolic syndrome are inconsistently present in the majority of women with PCOS. Approximately 50% of PCOS women are overweight or obese and most of them have the abdominal phenotype. Obesity may play a pathogenetic role in the development of the syndrome in susceptible individuals. In fact, insulin possesses true gonadotrophic function and an increased insulin availability at the level of ovarian tissue may favour excess androgen synthesis. Obesity, particularly the abdominal phenotype, may be partly responsible for insulin resistance and associated hyperinsulinemia in women with PCOS. Therefore, obesity-related hyperinsulinemia may play a key role in favouring hyperandrogenism in these women. Other factors such as increased estrogen production rate, increased activity of the opioid system and of the hypothalamic-pituitary-adrenal axis, decreased sex hormone binding globulin synthesis and, possibly, high dietary lipid intake, may be additional mechanisms by which obesity favours the development of hyperandrogenism in PCOS. Irrespective of the pathogenetic mechanism involved, obese PCOS women have more severe hyperandrogenism and related clinical features (such as hirsutism, menstrual abnormalities and anovulation) than normal-weight PCOS women. This picture tends to be more pronounced in obese PCOS women with the abdominal phenotype. Body weight loss is associated with beneficial effects on hormones, metabolism and clinical features. A further clinical and endocrinological improvement can also be achieved by adding insulin-sensitizing agents and/or antiandrogens to weight reduction programmes. These obviously emphasize the role of obesity in the pathophysiology of PCOS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adiponectin--journey from an adipocyte secretory protein to biomarker of the metabolic syndrome.

              Adiponectin is an adipocyte-derived hormone that was discovered in 1995. Unlike leptin, which was identified around the same time, the clinical relevance of adiponectin remained obscure for a number of years. However, starting in 2001, several studies were published from different laboratories that highlighted the potential antidiabetic, antiatherosclerotic and anti-inflammatory properties of this protein complex. Methods to measure the protein with high throughput assays in clinical samples were developed shortly thereafter, and as a result hundreds of clinical studies have been published over the past 3 years describing the role of adiponectin in endocrine and metabolic dysfunction. Furthermore, adiponectin research has expanded to include a role for adiponectin in cancer and other disease areas. Although it is an impossible task to summarize the findings from all these studies in a single review, we aim to demonstrate the utility of circulating adiponectin as a biomarker of the metabolic syndrome. Evidence for this relationship will include how decreased levels of plasma adiponectin ('hypoadiponectinaemia') are associated with increased body mass index (BMI), decreased insulin sensitivity, less favourable plasma lipid profiles, increased levels of inflammatory markers and increased risk for the development of cardiovascular disease. Therefore, adiponectin levels hold great promise for use in clinical application serving as a potent indicator of underlying metabolic complications.
                Bookmark

                Author and article information

                Journal
                Reprod Biol Endocrinol
                Reproductive Biology and Endocrinology : RB&E
                BioMed Central
                1477-7827
                2010
                10 March 2010
                : 8
                : 23
                Affiliations
                [1 ]Unité de Physiologie de la Reproduction et des Comportements, UMR85, Equipe Métabolisme et Reproduction, INRA, F-37 380 Nouzilly, France
                Article
                1477-7827-8-23
                10.1186/1477-7827-8-23
                2845137
                20219117
                2fa90727-dc8a-44c3-9283-c51de4535d96
                Copyright ©2010 Maillard et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 February 2010
                : 10 March 2010
                Categories
                Research

                Human biology
                Human biology

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content786

                Cited by28

                Most referenced authors727