78
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      NEW TOOLS FOR SURVEILLANCE OF ADULT YELLOW FEVER MOSQUITOES: COMPARISON OF TRAP CATCHES WITH HUMAN LANDING RATES IN AN URBAN ENVIRONMENT

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel mosquito trapping system, the BG-Sentinel trap, was evaluated as a monitoring tool for adult Aedes aegypti in field tests in the city of Belo Horizonte, Brazil. Human landing/biting collections, a gas-powered CO2 trap, and a Fay-Prince trap with only visual cues serving as references to evaluate the efficacy of the new trap. The BG-Sentinel is a simple suction trap that uses upward-directed air currents as well as visual cues to attract mosquitoes. The trap was tested with a new dispenser system (BG-Lure) that releases artificial human skin odors and needs no CO2. In comparison with the two other traps, the BG-Sentinel caught significantly more Ae. aegypti. Although human landing rates were the highest, there was no significant difference between human landing rates and the capture rates of the BG-Sentinel trap. The finding indicates that the trap can be considered as an acceptable alternative to human landing/biting collections in the surveillance of adult host-seeking dengue vectors. The addition of BG-Lure to the gas-powered CO2 trap greatly increased its efficacy. This combination, however, was not significantly more effective than the BG-Sentinel without CO2. In a 6-month comparison between the BG-Sentinel and a sticky ovitrap for gravid females, the BG-Sentinel proved to be a far more efficient and sensitive tool to measure the density of Ae. aegypti populations.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: not found
          • Article: not found

          Phylogeny and classification of Aedini (Diptera: Culicidae), based on morphological characters of all life stages

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ammonia as an attractive component of host odour for the yellow fever mosquito, Aedes aegypti.

            Behavioural responses of Aedes aegypti mosquitoes to ammonia were investigated in a modified Y-tube olfactometer. Ammonia was attractive in concentrations from 17 ppb to 17 ppm in air when presented together with lactic acid. Aqueous solutions of ammonia salts in concentrations comparable to those found in human sweat also increased the attractiveness of lactic acid. The role of lactic acid as an essential synergist for ammonia became further apparent by the fact that ammonia alone or in combination with carbon dioxide was not effective, even though the synergistic effect of carbon dioxide and lactic acid was corroborated. An extract from human skin residues, which attracts approximately 80% of the tested mosquitoes, contains both lactic acid and ammonia. The combination of these compounds, however, attracts no more than 45%, indicating that other components on human skin also play a role in host finding. Preparative liquid chromatography of the skin extract yielded three behaviourally active fractions which work together synergistically. Fraction III contains lactic acid as the effective principle; the compositions of the other two have not been clarified yet. The attractiveness of fraction I was augmented considerably when ammonia was added, whereas the effect of fraction II was not influenced by ammonia. These results suggests that ammonia is part of the effective principle of fraction II and contributes to the attractive effect of host odours.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Contribution of fatty acids to olfactory host finding of female Aedes aegypti.

              Single carbon to 18 carbon n-aliphatic carboxylic acids were tested for their attractive effects on female Aedes aegypti in a Y-tube olfactometer. Each acid was tested over a wide range of concentrations together with L-(+)-lactic acid, the indispensable synergist for other attractive components emitted from human hosts. The attractiveness of lactic acid was significantly augmented when combined with fatty acids of chain length C(1)-C(3), C(5)-C(8) and C(13)-C(18), respectively. The addition of the C(9) and C(11) acids reduced the attractive effect of lactic acid. According to experiments showing a further increase of attractiveness by adding a second fatty acid, we suggest two groups of attractive carboxylic acids: C(1)-C(3) and C(5)-C(8). The addition of a fatty acid from one group to a mixture of lactic acid and an acid from the other group augmented the attraction to the mixture. Together with ammonia, a previously demonstrated attractant for Aedes aegypti, lactic acid plus two fatty acids from the different groups formed the hitherto most attractive, artificially composed blend. Two of the carboxylic acids which were found to be attractive together with lactic acid were also tested alone and in combination with CO(2), the major attractant in human breath. In both cases no attractive effect of the carboxylic acids could be observed.
                Bookmark

                Author and article information

                Journal
                Journal of the American Mosquito Control Association
                Journal of the American Mosquito Control Association
                The American Mosquito Control Association
                8756-971X
                June 2006
                June 2006
                : 22
                : 2
                : 229-238
                Article
                10.2987/8756-971X(2006)22[229:NTFSOA]2.0.CO;2
                17019768
                2f91726c-f590-40f6-adbf-21dc014fb88a
                © 2006
                History

                Molecular medicine,Neurosciences
                Molecular medicine, Neurosciences

                Comments

                Comment on this article