36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Abnormalities of Endocytosis, Phagocytosis, and Development Process in Dictyostelium Cells That Over-Express Acanthamoeba castellanii Metacaspase Protein

      research-article

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Acanthamoeba castellanii forms a resistant cyst that protects the parasite against the host’s immune response. Acanthamoeba Type-I metacaspase (Acmcp) is a caspase-like protein that has been found to be expressed during the encystations. Dictyostelium discoideum is an organism closely related to Acanthamoeba useful for studying the molecular function of this protozoan caspase-like protein.

          Methods:

          The full length of Acmcp and a mutated version of the same gene, which lacks the proline rich N-terminal region (Acmcp-dpr), were cloned into the pDneo2a-GFP vector separately. The pDneo2a-GFP-Acmcp and pDneo2a-GFPAcmcp-dpr were electro-transfected into wild type D. discoideum cells to create cell lines that over-expressed Acmcp or Acmcp-dpr.

          Results:

          Both cell lines that over-expressed Acmcp and Acmcp-dpr showed a significant increase in the fluid phase internalization and phagocytosis rate compared to the control cells. Additionally, the cells expressing the Acmcp-dpr mutant were unable to initiate early development and failed to aggregate or form fruiting bodies under starvation conditions, whereas Acmcp over-expressing cells showed the opposite phenomena. Quantitative cell death analysis provided additional support for these findings.

          Conclusion:

          Acmcp is involved in the processes of endocytosis and phagocytosis. In addition, the proline rich region in Acmcp is important for cellular development in Dictyostelium. Given its important role in the development process, metacaspase protein is proposed as a candidate drug target against infections caused by A. castellanii.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Endocytosis unplugged: multiple ways to enter the cell

          Endocytosis occurs at the cell surface and involves internalization of the plasma membrane (PM) along with its constituent membrane proteins and lipids. Endocytosis is involved in sampling of the extracellular milieu and also serves to regulate various processes initiated at the cell surface. These include nutrient uptake, signaling from cell-surface receptors, and many other processes essential for cell and tissue functioning in metazoans. It is also central to the maintenance of PM lipid and protein homeostasis. There are multiple means of internalization that operate concurrently, at the cell surface. With advancement in high-resolution visualization techniques, it is now possible to track multiple endocytic cargo at the same time, revealing a remarkable diversity of endocytic processes in a single cell. A combination of live cell imaging and efficient genetic manipulations has also aided in understanding the functional hierarchy of molecular players in these mechanisms of internalization. Here we provide an account of various endocytic routes, their mechanisms of operation and occurrence across phyla.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The tree of eukaryotes.

            Recent advances in resolving the tree of eukaryotes are converging on a model composed of a few large hypothetical 'supergroups', each comprising a diversity of primarily microbial eukaryotes (protists, or protozoa and algae). The process of resolving the tree involves the synthesis of many kinds of data, including single-gene trees, multigene analyses, and other kinds of molecular and structural characters. Here, we review the recent progress in assembling the tree of eukaryotes, describing the major evidence for each supergroup, and where gaps in our knowledge remain. We also consider other factors emerging from phylogenetic analyses and comparative genomics, in particular lateral gene transfer, and whether such factors confound our understanding of the eukaryotic tree.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cysteine proteases of parasitic organisms.

              Cysteine proteases play numerous indispensable roles in the biology of parasitic organisms. Aside from previously known general catabolic functions and protein processing, cysteine proteases may be key to parasite immunoevasion, excystment/encystment, exsheathing and cell and tissue invasion. Parasite cysteine proteases are unusually immunogenic and have been exploited as serodiagnostic markers and vaccine targets. Although host homologues exist, parasite cysteine proteases have distinct structural and biochemical properties including, pH optima and stability, the alteration in peptide loops or domain extensions, diverse substrate specificity and cellular location. The disparate nature of parasite cysteine protease compared to the host orthologous proteins has opened opportunities for chemotherapy. This review will highlight recent research on the 'papain-like' class of cysteine proteases, the most abundant family, and the newly discovered class of asparaginyl-endopeptidases. Cysteine protease classification will be re-examined in light of the diversity uncovered within parasitic organisms.
                Bookmark

                Author and article information

                Journal
                Iran J Parasitol
                Iran J Parasitol
                IJPA
                IJPA
                Iranian Journal of Parasitology
                Tehran University of Medical Sciences
                1735-7020
                2008-238X
                Apr-Jun 2015
                : 10
                : 2
                : 213-229
                Affiliations
                [1. ]Dept. of Biology, College of Sciences, University of Baghdad, Baghdad, Iraq
                [2. ]Dept. of Biological Sciences, Marshall University, Huntington, West Virginia, USA
                [3. ]Dept. of Biology, College of Science and Mathematics, University of Arkansas at Little Rock, Arkansas, USA
                Author notes
                [* ] Correspondence Email: ejsaheb@ 123456ualr.edu
                Article
                ijpa-10-213
                4522297
                26246819
                2f6196fe-1e8f-4d3e-85cb-c7583e9d1f51
                Copyright© Iranian Society of Parasitology & Tehran University of Medical Sciences

                This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

                History
                : 16 November 2014
                : 25 February 2015
                Categories
                Original Article

                Parasitology
                acanthamoeba,metacaspase,dictyostelium,phagocytosis,development
                Parasitology
                acanthamoeba, metacaspase, dictyostelium, phagocytosis, development

                Comments

                Comment on this article