0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Longitudinal changes of the femoral bone mineral density from first to third trimester of pregnancy: bone health assessment by means of non-ionizing REMS technology

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Throughout the pregnancy, there is a substantial transfer of calcium from the maternal skeleton to the fetus, which leads to a transient net reduction of the maternal bone mineral density.

          Aims

          To assess longitudinally the changes in the bone mineral density at the femoral neck between the first and third trimester of pregnancy in a cohort of healthy participants using Radiofrequency Echographic Multi Spectrometry (REMS) technology.

          Methods

          Prospective, cohort study conducted at the University hospital of Parma, Italy between July 2022 and February 2023. We recruited healthy participants with an uncomplicated singleton pregnancy before 14 completed weeks of gestation. All included participants were submitted to a sonographic examination of the femoral neck to assess the bone mineral density (and the corresponding Z-score values) using REMS at 11–13 and 36–38 weeks of pregnancy. The primary outcome was the change in the bone mineral density values at the maternal femoral neck between the first and third trimester of pregnancy.

          Results

          Over a period of 7 months, a total of 65 participants underwent bone mineral density measurement at the femoral neck at first and third trimester of the pregnancy using REMS. A significant reduction of the bone mineral density at the femoral neck (0.723 ± 0.069 vs 0.709 ± 0.069 g/cm 2; p < 0.001) was noted with a mean bone mineral density change of − 1.9 ± 0.6% between the first and third trimester of pregnancy. At multivariable linear regression analysis, none of the demographic or clinical variables of the study population proved to be independently associated with the maternal bone mineral density changes at the femoral neck.

          Conclusions

          Our study conducted on a cohort of healthy participants with uncomplicated pregnancy demonstrates that there is a significant reduction of bone mineral density at femoral neck from early to late gestation.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: not found
          • Article: not found

          Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS/AMERICAN COLLEGE OF ENDOCRINOLOGY CLINICAL PRACTICE GUIDELINES FOR THE DIAGNOSIS AND TREATMENT OF POSTMENOPAUSAL OSTEOPOROSIS—2020 UPDATE

            Objective: The development of these guidelines is sponsored by the American Association of Clinical Endocrinologists (AACE) Board of Directors and American College of Endocrinology (ACE) Board of Trustees and adheres with published AACE protocols for the standardized production of clinical practice guidelines (CPGs). Methods: Recommendations are based on diligent reviews of the clinical evidence with transparent incorporation of subjective factors, according to established AACE/ACE guidelines for guidelines protocols. Results: The Executive Summary of this 2020 updated guideline contains 52 recommendations: 21 Grade A (40%), 24 Grade B (46%), 7 Grade C (14%), and no Grade D (0%). These detailed, evidence-based recommendations allow for nuance-based clinical decision-making that addresses multiple aspects of real-world care of patients. The evidence base presented in the subsequent Appendix provides relevant supporting information for the Executive Summary recommendations. This update contains 368 citations: 123 (33.5%) evidence level (EL) 1 (highest), 132 (36%) EL 2 (intermediate), 20 (5.5%) EL 3 (weak), and 93 (25%) EL 4 (lowest). New or updated topics in this CPG include: clarification of the diagnosis of osteoporosis, stratification of the patient according to high-risk and very-high-risk features, a new dual-action therapy option, and transitions from therapeutic options. Conclusion: This guideline is a practical tool for endocrinologists, physicians in general, regulatory bodies, health-related organizations, and interested laypersons regarding the diagnosis, evaluation, and treatment of post-menopausal osteoporosis. Abbreviations: 25(OH)D = 25-hydroxyvitamin D; AACE = American Association of Clinical Endocrinologists; ACE = American College of Endocrinology; AFF = atypical femoral fracture; ASBMR = American Society for Bone and Mineral Research; BEL = best evidence level; BMD = bone mineral density; BTM = bone turnover marker; CI = confidence interval; CPG = clinical practice guideline; CTX = C-terminal telopeptide type-I collagen; DXA = dual-energy X-ray absorptiometry; EL = evidence level; FDA = U.S. Food and Drug Administration; FRAX® = Fracture Risk Assessment Tool; GI = gastrointestinal; HORIZON = Health Outcomes and Reduced Incidence with Zoledronic acid ONce yearly Pivotal Fracture Trial (zoledronic acid and zoledronate are equivalent terms); ISCD = International Society for Clinical Densitometry; IU = international units; IV = intravenous; LSC = least significant change; NOF = National Osteoporosis Foundation; ONJ = osteonecrosis of the jaw; PINP = serum amino-terminal propeptide of type-I collagen; PTH = parathyroid hormone; R = recommendation; ROI = region of interest; RR = relative risk; SD = standard deviation; TBS = trabecular bone score; VFA = vertebral fracture assessment; WHO = World Health Organization
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Estrogen and the skeleton.

              Estrogen is the major hormonal regulator of bone metabolism in women and men. Therefore, there is considerable interest in unraveling the pathways by which estrogen exerts its protective effects on bone. Although the major consequence of the loss of estrogen is an increase in bone resorption, estrogen deficiency is associated with a gap between bone resorption and formation, indicating that estrogen is also important for maintaining bone formation at the cellular level. Direct estrogen effects on osteocytes, osteoclasts, and osteoblasts lead to inhibition of bone remodeling, decreased bone resorption, and maintenance of bone formation, respectively. Estrogen also modulates osteoblast/osteocyte and T-cell regulation of osteoclasts. Unraveling these pleiotropic effects of estrogen may lead to new approaches to prevent and treat osteoporosis. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                tullio.ghi@unipr.it
                Journal
                Aging Clin Exp Res
                Aging Clin Exp Res
                Aging Clinical and Experimental Research
                Springer International Publishing (Cham )
                1594-0667
                1720-8319
                9 February 2024
                9 February 2024
                2024
                : 36
                : 1
                : 31
                Affiliations
                [1 ]Department of Medicine and Surgery, Obstetrics and Gynecology Unit, University of Parma, ( https://ror.org/02k7wn190) Viale A. Gramsci 14, 43126 Parma, Italy
                [2 ]Fondazione Italiana per la Ricerca sulle Malattie dell’Osso (F.I.R.M.O.), Florence, Italy
                [3 ]GRID grid.5326.2, ISNI 0000 0001 1940 4177, Institute of Clinical Physiology, , National Research Council, ; Lecce, Italy
                [4 ]Echolight Spa, Lecce, Italy
                Article
                2677
                10.1007/s40520-023-02677-4
                10858072
                38334854
                2f478ca3-5dd3-4f76-b4a7-24d3a8de757f
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 15 November 2023
                : 7 December 2023
                Funding
                Funded by: Università degli Studi di Parma
                Categories
                Original Article
                Custom metadata
                © Springer Nature Switzerland AG 2024

                femur neck,osteoporosis,physiologic calcification,bone density,calcium metabolism,bone development

                Comments

                Comment on this article