2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A novel KLF4/LDHA signaling pathway regulates aerobic glycolysis in and progression of pancreatic cancer.

      Clinical cancer research : an official journal of the American Association for Cancer Research

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Krüppel-like factor 4 (KLF4) is a transcription factor and putative tumor suppressor. However, little is known about its effect on aerobic glycolysis in pancreatic tumors. Therefore, we investigated the clinical significance, biologic effects, and mechanisms of dysregulated KLF4 signaling in aerobic glycolysis in pancreatic cancer cells. Expression of KLF4 and lactate dehydrogenase A (LDHA) in 70 primary pancreatic tumors and 10 normal pancreatic tissue specimens was measured. Also, the underlying mechanisms of altered KLF4 expression and its impact on aerobic glycolysis in pancreatic cancer cells were investigated. We found a negative correlation between KLF4 and LDHA expression in pancreatic cancer cells and tissues and that their expression was associated with clinicopathologic features of pancreatic cancer. KLF4 underexpression and LDHA overexpression were correlated with disease stage and tumor differentiation. Experimentally, KLF4 overexpression significantly attenuated the aerobic glycolysis in and growth of pancreatic cancer cells both in vitro and in orthotopic mouse models, whereas knockdown of KLF4 expression had the opposite effect. Enforced KLF4 expression decreased LDHA expression, whereas small interfering RNA-mediated knockdown of KLF4 expression had the opposite effect. Mechanistically, KLF4 bound directly to the promoter regions of the LDHA gene and negatively regulated its transcription activity. Dysregulated signaling in this novel KLF4/LDHA pathway significantly impacts aerobic glycolysis in and development and progression of pancreatic cancer. ©2014 American Association for Cancer Research.

          Related collections

          Author and article information

          Journal
          24947925
          4134726
          10.1158/1078-0432.CCR-14-0186

          Comments

          Comment on this article