29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multidrug Resistance-Associated Protein 1 (MRP1) mediated vincristine resistance: effects of N-acetylcysteine and Buthionine Sulfoximine

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Multidrug resistance mediated by the multidrug resistance-associated protein 1 (MRP1) decreases cellular drug accumulation. The exact mechanism of MRP1 involved multidrug resistance has not been clarified yet, though glutathione (GSH) is likely to have a role for the resistance to occur. N-acetylcysteine (NAC) is a pro-glutathione drug. DL-Buthionine (S,R)-sulfoximine (BSO) is an inhibitor of GSH synthesis. The aim of our study was to investigate the effect of NAC and BSO on MRP1-mediated vincristine resistance in Human Embryonic Kidney (HEK293) and its MRP1 transfected 293MRP cells. Human Embryonic Kidney (HEK293) cells were transfected with a plasmid encoding whole MRP1 gene. Both cells were incubated with vincristine in the presence or absence of NAC and/or BSO. The viability of both cells was determined under different incubation conditions. GSH, Glutathione S-Transferase (GST) and glutathione peroxidase (GPx) levels were measured in the cell extracts obtained from both cells incubated with different drugs.

          Results

          N-acetylcysteine increased the resistance of both cells against vincristine and BSO decreased NAC-enhanced MRP1-mediated vincristine resistance, indicating that induction of MRP1-mediated vincristine resistance depends on GSH. Vincristine decreased cellular GSH concentration and increased GPx activity. Glutathione S-Transferase activity was decreased by NAC.

          Conclusion

          Our results demonstrate that NAC and BSO have opposite effects in MRP1 mediated vincristine resistance and BSO seems a promising chemotherapy improving agent in MRP1 overexpressing tumor cells.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          High-efficiency transformation of mammalian cells by plasmid DNA.

          We describe a simple calcium phosphate transfection protocol and neo marker vectors that achieve highly efficient transformation of mammalian cells. In this protocol, the calcium phosphate-DNA complex is formed gradually in the medium during incubation with cells and precipitates on the cells. The crucial factors for obtaining efficient transformation are the pH (6.95) of the buffer used for the calcium phosphate precipitation, the CO2 level (3%) during the incubation of the DNA with the cells, and the amount (20 to 30 micrograms) and the form (circular) of DNA. In sharp contrast to the results with circular DNA, linear DNA is almost inactive. Under these conditions, 50% of mouse L(A9) cells can be stably transformed with pcDneo, a simian virus 40-based neo (neomycin resistance) marker vector. The NIH3T3, C127, CV1, BHK, CHO, and HeLa cell lines were transformed at efficiencies of 10 to 50% with this vector and the neo marker-incorporated pcD vectors that were used for the construction and transduction of cDNA expression libraries as well as for the expression of cloned cDNA in mammalian cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acetaminophen-induced hepatotoxicity.

            The analgesic acetaminophen causes a potentially fatal, hepatic centrilobular necrosis when taken in overdose. The initial phases of toxicity were described in Dr. Gillette's laboratory in the 1970s. These findings indicated that acetaminophen was metabolically activated by cytochrome P450 enzymes to a reactive metabolite that depleted glutathione (GSH) and covalently bound to protein. It was shown that repletion of GSH prevented the toxicity. This finding led to the development of the currently used antidote N-acetylcysteine. The reactive metabolite was subsequently identified to be N-acetyl-p-benzoquinone imine (NAPQI). Although covalent binding has been shown to be an excellent correlate of toxicity, a number of other events have been shown to occur and are likely important in the initiation and repair of toxicity. Recent data have shown that nitrated tyrosine residues as well as acetaminophen adducts occur in the necrotic cells following toxic doses of acetaminophen. Nitrotyrosine was postulated to be mediated by peroxynitrite, a reactive nitrogen species formed by the very rapid reaction of superoxide and nitric oxide (NO). Peroxynitrite is normally detoxified by GSH, which is depleted in acetaminophen toxicity. NO synthesis (serum nitrate plus nitrite) was dramatically increased following acetaminophen. In inducible nitric oxide synthase (iNOS) knockout mice, acetaminophen did not increase NO synthesis or tyrosine nitration; however, histological evidence indicated no difference in toxicity. Acetaminophen did not cause hepatic lipid peroxidation in wild-type mice but did cause lipid peroxidation in iNOS knockout mice. These data suggest that NO may play a role in controlling lipid peroxidation and that reactive nitrogen/oxygen species may be important in toxicity. The source of the superoxide has not been identified, but our recent finding that NADPH oxidase knockout mice were equally sensitive to acetaminophen and had equal nitration of tyrosine suggests that the superoxide is not from the activation of Kupffer cells. It was postulated that NAPQI-mediated mitochondrial injury may be the source of the superoxide. In addition, the significance of cytokines and chemokines in the development of toxicity and repair processes has been demonstrated by several recent studies. IL-1beta is increased early in acetaminophen toxicity and may be important in iNOS induction. Other cytokines, such as IL-10, macrophage inhibitory protein-2 (MIP-2), and monocyte chemoattractant protein-1 (MCP-1), appear to be involved in hepatocyte repair and the regulation of proinflammatory cytokines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump.

              The multidrug-resistance associated protein MRP is a 180- to 195-kDa membrane protein associated with resistance of human tumor cells to cytotoxic drugs. We have investigated how MRP confers drug resistance in SW-1573 human lung carcinoma cells by generating a subline stably transfected with an expression vector containing MRP cDNA. MRP-overexpressing SW-1573 cells are resistant to doxorubicin, daunorubicin, vincristine, VP-16, colchicine, and rhodamine 123, but not to 4'-(9-acridinylamino)methanesulfon-m-anisidide or taxol. The intracellular accumulation of drug (daunorubicin, vincristine, and VP-16) is decreased and the efflux of drug (daunorubicin) is increased in the transfectant. The decreased accumulation of daunorubicin is abolished by permeabilization of the plasma membrane with digitonin, showing that MRP can lower the intracellular daunorubicin level against a concentration gradient. Anti-MRP antisera predominantly stain the plasma membrane of MRP-overexpressing cells. We conclude that MRP is a plasma membrane drug-efflux pump.
                Bookmark

                Author and article information

                Journal
                Cancer Cell Int
                Cancer Cell International
                BioMed Central (London )
                1475-2867
                2005
                24 July 2005
                : 5
                : 22
                Affiliations
                [1 ]Akdeniz University, Faculty of Medicine, Department of Biochemistry, 07070 Antalya, Turkey
                [2 ]Pamukkale University, Faculty of Art&Science, Department of Biology, Denizli, Turkey
                [3 ]Akdeniz University, Faculty of Medicine, Department of Internal Medicine, Division of Oncology, 07070 Antalya, Turkey
                Article
                1475-2867-5-22
                10.1186/1475-2867-5-22
                1183228
                16042792
                2f2f7f58-921d-4c1d-8a72-7a37800851cb
                Copyright © 2005 Akan et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 May 2005
                : 24 July 2005
                Categories
                Primary Research

                Oncology & Radiotherapy
                n-acetylcysteine,mrp1,vincristine,gsh,hek293,bso
                Oncology & Radiotherapy
                n-acetylcysteine, mrp1, vincristine, gsh, hek293, bso

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content316

                Cited by12

                Most referenced authors531