Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
61
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New Views on Strand Asymmetry in Insect Mitochondrial Genomes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Strand asymmetry in nucleotide composition is a remarkable feature of animal mitochondrial genomes. Understanding the mutation processes that shape strand asymmetry is essential for comprehensive knowledge of genome evolution, demographical population history and accurate phylogenetic inference. Previous studies found that the relative contributions of different substitution types to strand asymmetry are associated with replication alone or both replication and transcription. However, the relative contributions of replication and transcription to strand asymmetry remain unclear. Here we conducted a broad survey of strand asymmetry across 120 insect mitochondrial genomes, with special reference to the correlation between the signs of skew values and replication orientation/gene direction. The results show that the sign of GC skew on entire mitochondrial genomes is reversed in all species of three distantly related families of insects, Philopteridae (Phthiraptera), Aleyrodidae (Hemiptera) and Braconidae (Hymenoptera); the replication-related elements in the A+T-rich regions of these species are inverted, confirming that reversal of strand asymmetry (GC skew) was caused by inversion of replication origin; and finally, the sign of GC skew value is associated with replication orientation but not with gene direction, while that of AT skew value varies with gene direction, replication and codon positions used in analyses. These findings show that deaminations during replication and other mutations contribute more than selection on amino acid sequences to strand compositions of G and C, and that the replication process has a stronger affect on A and T content than does transcription. Our results may contribute to genome-wide studies of replication and transcription mechanisms.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          The incomplete natural history of mitochondria.

          Mitochondrial DNA (mtDNA) has been used to study molecular ecology and phylogeography for 25 years. Much important information has been gained in this way, but it is time to reflect on the biology of the mitochondrion itself and consider opportunities for evolutionary studies of the organelle itself and its ecology, biochemistry and physiology. This review has four sections. First, we review aspects of the natural history of mitochondria and their DNA to show that it is a unique molecule with specific characteristics that differ from nuclear DNA. We do not attempt to cover the plethora of differences between mitochondrial and nuclear DNA; rather we spotlight differences that can cause significant bias when inferring demographic properties of populations and/or the evolutionary history of species. We focus on recombination, effective population size and mutation rate. Second, we explore some of the difficulties in interpreting phylogeographical data from mtDNA data alone and suggest a broader use of multiple nuclear markers. We argue that mtDNA is not a sufficient marker for phylogeographical studies if the focus of the investigation is the species and not the organelle. We focus on the potential bias caused by introgression. Third, we show that it is not safe to assume a priori that mtDNA evolves as a strictly neutral marker because both direct and indirect selection influence mitochondria. We outline some of the statistical tests of neutrality that can, and should, be applied to mtDNA sequence data prior to making any global statements concerning the history of the organism. We conclude with a critical examination of the neglected biology of mitochondria and point out several surprising gaps in the state of our knowledge about this important organelle. Here we limelight mitochondrial ecology, sexually antagonistic selection, life-history evolution including ageing and disease, and the evolution of mitochondrial inheritance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of metazoa, and consequences for phylogenetic inferences.

            Mitochondrial DNA (mtDNA) sequences are comonly used for inferring phylogenetic relationships. However, the strand-specific bias in the nucleotide composition of the mtDNA, which is thought to reflect assymetric mutational constraints, combined with the important compositional heterogeneity among taxa, are known to be highly problematic for phylogenetic analyses. Here, nucleotide composition was compared across 49 species of Metazoa (34 arthropods, 2 annelids, 2 molluscs, and 11 deuterosomes), and analyzed for a mtDNA fragment including six protein-coding genes, i.e., atp6, atp8, cox1, cox2, cox3, and nad2. The analyses show that most metazoan species present a clear strand assymetry, where one strand is biased in favor of A and C, whereas the other strand has reverse bias, i.e. in favor of T and G. the origin of this strand bias can be related to assymetric mutational constraints involving deaminations of A and C nucleotides during the replication and/or transcription processes. The analyses reveal that six unrelated genera are characterized by a reversal of the usual strand bias, i.e., Argiope (Araneae), Euscorpius (Scorpiones), Tigrioupus (Maxillopoda), Branchiostoma (Cephalochordata) Florometra (Echinodermata), and Katharina (Mollusca). It is proposed that assymetric mutational constraints have been independantly reversed in these six genera, through an inversion of the control region, i.e., the region that contains most regulatory elements for replication and transcription of the mtDNA. We show that reversals of assymetric mutational constraints have dramatic consequences on the phylogenetic analyses, as taxa characterized by reverse strand bias tend to group together due to long-branch attraction artifacts. We propose a new method for limiting this specific problem in tree reconstruction under the Bayesian approach. We apply our method to deal with the question of phylogenetic relationships of the major lineages of Arthropoda, This new approach provides a better congruence with nuclear analyses based on mtDNA sequences, our data suggest that Chelicerata, Crustacea, Myriapoda, Pancrustacea, and Paradoxopoda are monophyletic.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Replication of animal mitochondrial DNA.

              D Clayton (1982)
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                15 September 2010
                : 5
                : 9
                : e12708
                Affiliations
                [1 ]State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
                [2 ]Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
                [3 ]Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
                [4 ]Department of Entomology, Nationaal Natuurhistorisch Museum, Leiden, The Netherlands
                Natural History Museum of Denmark, Denmark
                Author notes

                Conceived and designed the experiments: SJW MS XXC. Performed the experiments: SJW MS. Analyzed the data: SJW MS. Contributed reagents/materials/analysis tools: XXC. Wrote the paper: SJW XXC. Intellectual contributions during the design and implementation of this study: XXC MS. Intellectual contributions during the writing of the manuscript: XXC MS CvA GYY JHH. Provided funds in support of this study: XXC.

                Article
                09-PONE-RA-13348R2
                10.1371/journal.pone.0012708
                2939890
                20856815
                2e59da94-93dc-4843-aaca-6a883b990259
                Wei et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 5 October 2009
                : 20 August 2010
                Page count
                Pages: 10
                Categories
                Research Article
                Evolutionary Biology/Animal Genetics
                Evolutionary Biology/Evolutionary and Comparative Genetics
                Evolutionary Biology/Genomics
                Genetics and Genomics/Comparative Genomics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article