1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Fundamentals and applications of char in biomass tar reforming

      , , ,
      Fuel Processing Technology
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references235

          • Record: found
          • Abstract: found
          • Article: not found

          Biochar as a sorbent for contaminant management in soil and water: a review.

          Biochar is a stable carbon-rich by-product synthesized through pyrolysis/carbonization of plant- and animal-based biomass. An increasing interest in the beneficial application of biochar has opened up multidisciplinary areas for science and engineering. The potential biochar applications include carbon sequestration, soil fertility improvement, pollution remediation, and agricultural by-product/waste recycling. The key parameters controlling its properties include pyrolysis temperature, residence time, heat transfer rate, and feedstock type. The efficacy of biochar in contaminant management depends on its surface area, pore size distribution and ion-exchange capacity. Physical architecture and molecular composition of biochar could be critical for practical application to soil and water. Relatively high pyrolysis temperatures generally produce biochars that are effective in the sorption of organic contaminants by increasing surface area, microporosity, and hydrophobicity; whereas the biochars obtained at low temperatures are more suitable for removing inorganic/polar organic contaminants by oxygen-containing functional groups, electrostatic attraction, and precipitation. However, due to complexity of soil-water system in nature, the effectiveness of biochars on remediation of various organic/inorganic contaminants is still uncertain. In this review, a succinct overview of current biochar use as a sorbent for contaminant management in soil and water is summarized and discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dynamic molecular structure of plant biomass-derived black carbon (biochar).

            Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration ("biochar"). Here we present a molecular-level assessment of the physical organization and chemical complexity of biomass-derived chars and, specifically, that of aromatic carbon in char structures. Brunauer-Emmett-Teller (BET)-N(2) surface area (SA), X-ray diffraction (XRD), synchrotron-based near-edge X-ray absorption fine structure (NEXAFS), and Fourier transform infrared (FT-IR) spectroscopy are used to show how two plant materials (wood and grass) undergo analogous but quantitatively different physical-chemical transitions as charring temperature increases from 100 to 700 degrees C. These changes suggest the existence of four distinct categories of char consisting of a unique mixture of chemical phases and physical states: (i) in transition chars, the crystalline character of the precursor materials is preserved; (ii) in amorphous chars, the heat-altered molecules and incipient aromatic polycondensates are randomly mixed; (iii) composite chars consist of poorly ordered graphene stacks embedded in amorphous phases; and (iv) turbostratic chars are dominated by disordered graphitic crystallites. Molecular variations among the different char categories likely translate into differences in their ability to persist in the environment and function as environmental sorbents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent--a critical review.

              Biochar is used for soil conditioning, remediation, carbon sequestration and water remediation. Biochar application to water and wastewater has never been reviewed previously. This review focuses on recent applications of biochars, produced from biomass pyrolysis (slow and fast), in water and wastewater treatment. Slow and fast pyrolysis biochar production is briefly discussed. The literature on sorption of organic and inorganic contaminants by biochars is surveyed and reviewed. Adsorption capacities for organic and inorganic contaminants by different biochars under different operating conditions are summarized and, where possible, compared. Mechanisms responsible for contaminant remediation are briefly discussed. Finally, a few recommendations for further research have been made in the area of biochar development for application to water filtration.
                Bookmark

                Author and article information

                Journal
                Fuel Processing Technology
                Fuel Processing Technology
                Elsevier BV
                03783820
                June 2021
                June 2021
                : 216
                : 106782
                Article
                10.1016/j.fuproc.2021.106782
                2e3ad162-da49-47ed-b5cd-3e936edac66f
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article