9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Comprehensive genetic analysis of 57 families with clinically suspected Cornelia de Lange syndrome

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cornelia de Lange syndrome (CdLS) is a rare multisystem disorder with specific dysmorphic features. Pathogenic genetic variants encoding cohesion complex subunits and interacting proteins (e.g., NIPBL, SMC1A, SMC3, HDAC8, and RAD21) are the major causes of CdLS. However, there are many clinically diagnosed cases of CdLS without pathogenic variants in these genes. To identify further genetic causes of CdLS, we performed whole-exome sequencing in 57 CdLS families, systematically evaluating both single nucleotides variants (SNVs) and copy number variations (CNVs). We identified pathogenic genetic changes in 36 out of 57 (63.2 %) families, including 32 SNVs and four CNVs. Two known CdLS genes, NIPBL and SMC1A, were mutated in 23 and two cases, respectively. Among the remaining 32 individuals, four genes (ANKRD11, EP300, KMT2A, and SETD5) each harbored a pathogenic variant in a single individual. These variants are known to be involved in CdLS-like. Furthermore, pathogenic CNVs were detected in NIPBL, MED13L, and EHMT1, along with pathogenic SNVs in ZMYND11, MED13L, and PHIP. These three latter genes were involved in diseases other than CdLS and CdLS-like. Systematic clinical evaluation of all patients using a recently proposed clinical scoring system showed that ZMYND11, MED13L, and PHIP abnormality may cause CdLS or CdLS-like.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Discovery and statistical genotyping of copy-number variation from whole-exome sequencing depth.

          Sequencing of gene-coding regions (the exome) is increasingly used for studying human disease, for which copy-number variants (CNVs) are a critical genetic component. However, detecting copy number from exome sequencing is challenging because of the noncontiguous nature of the captured exons. This is compounded by the complex relationship between read depth and copy number; this results from biases in targeted genomic hybridization, sequence factors such as GC content, and batching of samples during collection and sequencing. We present a statistical tool (exome hidden Markov model [XHMM]) that uses principal-component analysis (PCA) to normalize exome read depth and a hidden Markov model (HMM) to discover exon-resolution CNV and genotype variation across samples. We evaluate performance on 90 schizophrenia trios and 1,017 case-control samples. XHMM detects a median of two rare (<1%) CNVs per individual (one deletion and one duplication) and has 79% sensitivity to similarly rare CNVs overlapping three or more exons discovered with microarrays. With sensitivity similar to state-of-the-art methods, XHMM achieves higher specificity by assigning quality metrics to the CNV calls to filter out bad ones, as well as to statistically genotype the discovered CNV in all individuals, yielding a trio call set with Mendelian-inheritance properties highly consistent with expectation. We also show that XHMM breakpoint quality scores enable researchers to explicitly search for novel classes of structural variation. For example, we apply XHMM to extract those CNVs that are highly likely to disrupt (delete or duplicate) only a portion of a gene. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression.

            Recognition of modified histones by 'reader' proteins plays a critical role in the regulation of chromatin. H3K36 trimethylation (H3K36me3) is deposited onto the nucleosomes in the transcribed regions after RNA polymerase II elongation. In yeast, this mark in turn recruits epigenetic regulators to reset the chromatin to a relatively repressive state, thus suppressing cryptic transcription. However, much less is known about the role of H3K36me3 in transcription regulation in mammals. This is further complicated by the transcription-coupled incorporation of the histone variant H3.3 in gene bodies. Here we show that the candidate tumour suppressor ZMYND11 specifically recognizes H3K36me3 on H3.3 (H3.3K36me3) and regulates RNA polymerase II elongation. Structural studies show that in addition to the trimethyl-lysine binding by an aromatic cage within the PWWP domain, the H3.3-dependent recognition is mediated by the encapsulation of the H3.3-specific 'Ser 31' residue in a composite pocket formed by the tandem bromo-PWWP domains of ZMYND11. Chromatin immunoprecipitation followed by sequencing shows a genome-wide co-localization of ZMYND11 with H3K36me3 and H3.3 in gene bodies, and its occupancy requires the pre-deposition of H3.3K36me3. Although ZMYND11 is associated with highly expressed genes, it functions as an unconventional transcription co-repressor by modulating RNA polymerase II at the elongation stage. ZMYND11 is critical for the repression of a transcriptional program that is essential for tumour cell growth; low expression levels of ZMYND11 in breast cancer patients correlate with worse prognosis. Consistently, overexpression of ZMYND11 suppresses cancer cell growth in vitro and tumour formation in mice. Together, this study identifies ZMYND11 as an H3.3-specific reader of H3K36me3 that links the histone-variant-mediated transcription elongation control to tumour suppression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Diagnosis and management of Cornelia de Lange syndrome: first international consensus statement

              Cornelia de Lange syndrome (CdLS) is an archetypical genetic syndrome that is characterized by intellectual disability, well-defined facial features, upper limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in any one of seven genes, all of which have a structural or regulatory function in the cohesin complex. Although recent advances in next-generation sequencing have improved molecular diagnostics, marked heterogeneity exists in clinical and molecular diagnostic approaches and care practices worldwide. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria, both for classic CdLS and non-classic CdLS phenotypes, molecular investigations, long-term management and care planning.
                Bookmark

                Author and article information

                Journal
                Journal of Human Genetics
                J Hum Genet
                Springer Science and Business Media LLC
                1434-5161
                1435-232X
                July 23 2019
                Article
                10.1038/s10038-019-0643-z
                31337854
                2e2bda2e-62d1-41d0-8274-d0f6b7f405d1
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article