53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Subcellular Localization Determines the Stability and Axon Protective Capacity of Axon Survival Factor Nmnat2

      research-article
      , , *
      PLoS Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Modulation of the subcellular localization of the endogenous axon survival factor Nmnat2 boosts its axon protective capacity, suggesting a novel approach to delaying axon degeneration in neurodegenerative disease.

          Abstract

          Axons require a constant supply of the labile axon survival factor Nmnat2 from their cell bodies to avoid spontaneous axon degeneration. Here we investigate the mechanism of fast axonal transport of Nmnat2 and its site of action for axon maintenance. Using dual-colour live-cell imaging of axonal transport in SCG primary culture neurons, we find that Nmnat2 is bidirectionally trafficked in axons together with markers of the trans-Golgi network and synaptic vesicles. In contrast, there is little co-migration with mitochondria, lysosomes, and active zone precursor vesicles. Residues encoded by the small, centrally located exon 6 are necessary and sufficient for stable membrane association and vesicular axonal transport of Nmnat2. Within this sequence, a double cysteine palmitoylation motif shared with GAP43 and surrounding basic residues are all required for efficient palmitoylation and stable association with axonal transport vesicles. Interestingly, however, disrupting this membrane association increases the ability of axonally localized Nmnat2 to preserve transected neurites in primary culture, while re-targeting the strongly protective cytosolic mutants back to membranes abolishes this increase. Larger deletions within the central domain including exon 6 further enhance Nmnat2 axon protective capacity to levels that exceed that of the slow Wallerian degeneration protein, Wld S. The mechanism underlying the increase in axon protection appears to involve an increased half-life of the cytosolic forms, suggesting a role for palmitoylation and membrane attachment in Nmnat2 turnover. We conclude that Nmnat2 activity supports axon survival through a site of action distinct from Nmnat2 transport vesicles and that protein stability, a key determinant of axon protection, is enhanced by mutations that disrupt palmitoylation and dissociate Nmnat2 from these vesicles.

          Author Summary

          Neurons are polarized cells that rely on bidirectional transport to deliver thousands of cargos between the cell body and the most distal ends of their axons. One cargo that is of particular importance is the NAD-synthesising enzyme Nmnat2. This surprisingly unstable protein is produced in the cell body and its constant supply into axons is required to keep them alive. If this supply is interrupted, Nmnat2 levels in the distal axon drop below a critical threshold, leading to axon degeneration. The rapid turnover of Nmnat2 contributes critically to the time course of axon degeneration. If its half-life could be extended, axons may be able to survive transient interruptions of its supply. In this study, we find that disruption of Nmnat2 localization to axonal transport vesicles increases both its half-life and its capacity to protect injured neurites. Specifically, association of Nmnat2 with transport vesicles reduces it stability by making it vulnerable to ubiquitination and proteasome-mediated degradation. These findings suggest that modulation of the subcellular localization of Nmnat2 on transport vesicles could serve as a potential avenue for therapeutic treatment of axon degeneration.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization.

          mRNAs are transported, localized, and translated in axons of sensory neurons. However, little is known about the full repertoire of transcripts present in embryonic and adult sensory axons and how this pool of mRNAs dynamically changes during development. Here, we used a compartmentalized chamber to isolate mRNA from pure embryonic and adult sensory axons devoid of non-neuronal or cell body contamination. Genome-wide microarray analysis reveals that a previously unappreciated number of transcripts are localized in sensory axons and that this repertoire changes during development toward adulthood. Embryonic axons are enriched in transcripts encoding cytoskeletal-related proteins with a role in axonal outgrowth. Surprisingly, adult axons are enriched in mRNAs encoding immune molecules with a role in nociception. Additionally, we show Tubulin-beta3 (Tubb3) mRNA is present only in embryonic axons, with Tubb3 locally synthesized in axons of embryonic, but not adult neurons where it is transported, thus validating our experimental approach. In summary, we provide the first complete catalog of embryonic and adult sensory axonal mRNAs. In addition we show that this pool of axonal mRNAs dynamically changes during development. These data provide an important resource for studies on the role of local protein synthesis in axon regeneration and nociception during neuronal development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene.

            Axons and their synapses distal to an injury undergo rapid Wallerian degeneration, but axons in the C57BL/WldS mouse are protected. The degenerative and protective mechanisms are unknown. We identified the protective gene, which encodes an N-terminal fragment of ubiquitination factor E4B (Ube4b) fused to nicotinamide mononucleotide adenylyltransferase (Nmnat), and showed that it confers a dose-dependent block of Wallerian degeneration. Transected distal axons survived for two weeks, and neuromuscular junctions were also protected. Surprisingly, the Wld protein was located predominantly in the nucleus, indicating an indirect protective mechanism. Nmnat enzyme activity, but not NAD+ content, was increased fourfold in WldS tissues. Thus, axon protection is likely to be mediated by altered ubiquitination or pyridine nucleotide metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Visualization of retroviral replication in living cells reveals budding into multivesicular bodies.

              Retroviral assembly and budding is driven by the Gag polyprotein and requires the host-derived vacuolar protein sorting (vps) machinery. With the exception of human immunodeficiency virus (HIV)-infected macrophages, current models predict that the vps machinery is recruited by Gag to viral budding sites at the cell surface. However, here we demonstrate that HIV Gag and murine leukemia virus (MLV) Gag also drive assembly intracellularly in cell types including 293 and HeLa cells, previously believed to exclusively support budding from the plasma membrane. Using live confocal microscopy in conjunction with electron microscopy of cells generating fluorescently labeled virions or virus-like particles, we observed that these retroviruses utilize late endosomal membranes/multivesicular bodies as assembly sites, implying an endosome-based pathway for viral egress. These data suggest that retroviruses can interact with the vps sorting machinery in a more traditional sense, directly linked to the mechanism by which cellular proteins are sorted into multivesicular endosomes.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                April 2013
                April 2013
                16 April 2013
                : 11
                : 4
                : e1001539
                Affiliations
                [1]The Babraham Institute, Cambridge, United Kingdom
                Stanford University School of Medicine, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: SM JG MPC. Performed the experiments: SM. Analyzed the data: SM. Wrote the paper: SM JG MPC.

                Article
                PBIOLOGY-D-12-03166
                10.1371/journal.pbio.1001539
                3627647
                23610559
                2dfbc5d4-8b9f-4ed4-be6b-1837845e4b35
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 August 2012
                : 6 March 2013
                Page count
                Pages: 19
                Funding
                This work was funded by a Medical Research Council (MRC; http://www.mrc.ac.uk) studentship (SM), MRC project grant G1000702 (JG) and Biotechnology and Biological Sciences Research Council ( http://www.bbsrc.ac.uk) Institute Strategic Programme Grant (MPC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Molecular Cell Biology
                Membranes and Sorting
                Neuroscience
                Molecular Neuroscience
                Neurobiology of Disease and Regeneration

                Life sciences
                Life sciences

                Comments

                Comment on this article

                scite_
                114
                23
                183
                0
                Smart Citations
                114
                23
                183
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content9

                Cited by59

                Most referenced authors926