Toxin–antitoxin (TA) systems are small genetic elements composed of a toxin gene and its cognate antitoxin. The toxins of all known TA systems are proteins while the antitoxins are either proteins or non-coding RNAs. Based on the molecular nature of the antitoxin and its mode of interaction with the toxin the TA modules are currently grouped into five classes. In general, the toxin is more stable than the antitoxin but the latter is expressed to a higher level. If supply of the antitoxin stops, for instance under special growth conditions or by plasmid loss in case of plasmid encoded TA systems, the antitoxin is rapidly degraded and can no longer counteract the toxin. Consequently, the toxin becomes activated and can act on its cellular targets. Typically, TA toxins act on crucial cellular processes including translation, replication, cytoskeleton formation, membrane integrity, and cell wall biosynthesis. TA systems and their components are also versatile tools for a multitude of purposes in basic research and biotechnology. Currently, TA systems are frequently used for selection in cloning and for single protein expression in living bacterial cells. Since several TA toxins exhibit activity in yeast and mammalian cells they may be useful for applications in eukaryotic systems. TA modules are also considered as promising targets for the development of antibacterial drugs and their potential to combat viral infection may aid in controlling infectious diseases.