1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Current developments in antibiotic discovery : Global microbial diversity as a source for evolutionary optimized anti‐bacterials

      article-commentary

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In light of the pending antibiotic resistance crisis, we need to go back to nature and search for novel anti‐bacterial compounds.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis

          (2022)
          Summary Background Antimicrobial resistance (AMR) poses a major threat to human health around the world. Previous publications have estimated the effect of AMR on incidence, deaths, hospital length of stay, and health-care costs for specific pathogen–drug combinations in select locations. To our knowledge, this study presents the most comprehensive estimates of AMR burden to date. Methods We estimated deaths and disability-adjusted life-years (DALYs) attributable to and associated with bacterial AMR for 23 pathogens and 88 pathogen–drug combinations in 204 countries and territories in 2019. We obtained data from systematic literature reviews, hospital systems, surveillance systems, and other sources, covering 471 million individual records or isolates and 7585 study-location-years. We used predictive statistical modelling to produce estimates of AMR burden for all locations, including for locations with no data. Our approach can be divided into five broad components: number of deaths where infection played a role, proportion of infectious deaths attributable to a given infectious syndrome, proportion of infectious syndrome deaths attributable to a given pathogen, the percentage of a given pathogen resistant to an antibiotic of interest, and the excess risk of death or duration of an infection associated with this resistance. Using these components, we estimated disease burden based on two counterfactuals: deaths attributable to AMR (based on an alternative scenario in which all drug-resistant infections were replaced by drug-susceptible infections), and deaths associated with AMR (based on an alternative scenario in which all drug-resistant infections were replaced by no infection). We generated 95% uncertainty intervals (UIs) for final estimates as the 25th and 975th ordered values across 1000 posterior draws, and models were cross-validated for out-of-sample predictive validity. We present final estimates aggregated to the global and regional level. Findings On the basis of our predictive statistical models, there were an estimated 4·95 million (3·62–6·57) deaths associated with bacterial AMR in 2019, including 1·27 million (95% UI 0·911–1·71) deaths attributable to bacterial AMR. At the regional level, we estimated the all-age death rate attributable to resistance to be highest in western sub-Saharan Africa, at 27·3 deaths per 100 000 (20·9–35·3), and lowest in Australasia, at 6·5 deaths (4·3–9·4) per 100 000. Lower respiratory infections accounted for more than 1·5 million deaths associated with resistance in 2019, making it the most burdensome infectious syndrome. The six leading pathogens for deaths associated with resistance (Escherichia coli, followed by Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa) were responsible for 929 000 (660 000–1 270 000) deaths attributable to AMR and 3·57 million (2·62–4·78) deaths associated with AMR in 2019. One pathogen–drug combination, meticillin-resistant S aureus, caused more than 100 000 deaths attributable to AMR in 2019, while six more each caused 50 000–100 000 deaths: multidrug-resistant excluding extensively drug-resistant tuberculosis, third-generation cephalosporin-resistant E coli, carbapenem-resistant A baumannii, fluoroquinolone-resistant E coli, carbapenem-resistant K pneumoniae, and third-generation cephalosporin-resistant K pneumoniae. Interpretation To our knowledge, this study provides the first comprehensive assessment of the global burden of AMR, as well as an evaluation of the availability of data. AMR is a leading cause of death around the world, with the highest burdens in low-resource settings. Understanding the burden of AMR and the leading pathogen–drug combinations contributing to it is crucial to making informed and location-specific policy decisions, particularly about infection prevention and control programmes, access to essential antibiotics, and research and development of new vaccines and antibiotics. There are serious data gaps in many low-income settings, emphasising the need to expand microbiology laboratory capacity and data collection systems to improve our understanding of this important human health threat. Funding Bill & Melinda Gates Foundation, Wellcome Trust, and Department of Health and Social Care using UK aid funding managed by the Fleming Fund.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019

            This review is an updated and expanded version of the five prior reviews that were published in this journal in 1997, 2003, 2007, 2012, and 2016. For all approved therapeutic agents, the time frame has been extended to cover the almost 39 years from the first of January 1981 to the 30th of September 2019 for all diseases worldwide and from ∼1946 (earliest so far identified) to the 30th of September 2019 for all approved antitumor drugs worldwide. As in earlier reviews, only the first approval of any drug is counted, irrespective of how many "biosimilars" or added approvals were subsequently identified. As in the 2012 and 2016 reviews, we have continued to utilize our secondary subdivision of a "natural product mimic", or "NM", to join the original primary divisions, and the designation "natural product botanical", or "NB", to cover those botanical "defined mixtures" now recognized as drug entities by the FDA (and similar organizations). From the data presented in this review, the utilization of natural products and/or synthetic variations using their novel structures, in order to discover and develop the final drug entity, is still alive and well. For example, in the area of cancer, over the time frame from 1946 to 1980, of the 75 small molecules, 40, or 53.3%, are N or ND. In the 1981 to date time frame the equivalent figures for the N* compounds of the 185 small molecules are 62, or 33.5%, though to these can be added the 58 S* and S*/NMs, bringing the figure to 64.9%. In other areas, the influence of natural product structures is quite marked with, as expected from prior information, the anti-infective area being dependent on natural products and their structures, though as can be seen in the review there are still disease areas (shown in Table 2) for which there are no drugs derived from natural products. Although combinatorial chemistry techniques have succeeded as methods of optimizing structures and have been used very successfully in the optimization of many recently approved agents, we are still able to identify only two de novo combinatorial compounds (one of which is a little speculative) approved as drugs in this 39-year time frame, though there is also one drug that was developed using the "fragment-binding methodology" and approved in 2012. We have also added a discussion of candidate drug entities currently in clinical trials as "warheads" and some very interesting preliminary reports on sources of novel antibiotics from Nature due to the absolute requirement for new agents to combat plasmid-borne resistance genes now in the general populace. We continue to draw the attention of readers to the recognition that a significant number of natural product drugs/leads are actually produced by microbes and/or microbial interactions with the "host from whence it was isolated"; thus we consider that this area of natural product research should be expanded significantly.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A new antibiotic kills pathogens without detectable resistance.

              Antibiotic resistance is spreading faster than the introduction of new compounds into clinical practice, causing a public health crisis. Most antibiotics were produced by screening soil microorganisms, but this limited resource of cultivable bacteria was overmined by the 1960s. Synthetic approaches to produce antibiotics have been unable to replace this platform. Uncultured bacteria make up approximately 99% of all species in external environments, and are an untapped source of new antibiotics. We developed several methods to grow uncultured organisms by cultivation in situ or by using specific growth factors. Here we report a new antibiotic that we term teixobactin, discovered in a screen of uncultured bacteria. Teixobactin inhibits cell wall synthesis by binding to a highly conserved motif of lipid II (precursor of peptidoglycan) and lipid III (precursor of cell wall teichoic acid). We did not obtain any mutants of Staphylococcus aureus or Mycobacterium tuberculosis resistant to teixobactin. The properties of this compound suggest a path towards developing antibiotics that are likely to avoid development of resistance.
                Bookmark

                Author and article information

                Contributors
                rolf.mueller@helmholtz-hips.de
                Journal
                EMBO Rep
                EMBO Rep
                10.1002/(ISSN)1469-3178
                EMBR
                embor
                EMBO Reports
                John Wiley and Sons Inc. (Hoboken )
                1469-221X
                1469-3178
                21 December 2022
                January 2023
                21 December 2022
                : 24
                : 1 ( doiID: 10.1002/embr.v24.1 )
                : e56184
                Affiliations
                [ 1 ] Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) Saarbrücken Germany
                [ 2 ] Department of Pharmacy Saarland University Saarbrücken Germany
                [ 3 ] Helmholtz International Lab for Anti‐Infectives Saarbrücken Germany
                Author notes
                [*] [* ]Corresponding author. E‐mail: rolf.mueller@ 123456helmholtz-hips.de
                Author information
                https://orcid.org/0000-0002-3859-8744
                https://orcid.org/0000-0001-6847-8033
                https://orcid.org/0000-0002-1101-0939
                https://orcid.org/0000-0002-1042-5665
                Article
                EMBR202256184
                10.15252/embr.202256184
                9827545
                36541849
                2debaf21-6362-405d-a54e-07aed6911b52
                © 2022 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

                History
                : 23 September 2022
                : 06 December 2022
                Page count
                Figures: 5, Tables: 0, Pages: 7, Words: 5010
                Categories
                Science & Society
                Science & Society
                Custom metadata
                2.0
                09 January 2023
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.2.3 mode:remove_FC converted:09.01.2023

                Molecular biology
                economics, law & politics,evolution & ecology,pharmacology & drug discovery

                Comments

                Comment on this article