1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The ecology and evolution of key innovations

      , ,
      Trends in Ecology & Evolution
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: not found
          • Article: not found

          BUTTERFLIES AND PLANTS: A STUDY IN COEVOLUTION

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli.

            The role of historical contingency in evolution has been much debated, but rarely tested. Twelve initially identical populations of Escherichia coli were founded in 1988 to investigate this issue. They have since evolved in a glucose-limited medium that also contains citrate, which E. coli cannot use as a carbon source under oxic conditions. No population evolved the capacity to exploit citrate for >30,000 generations, although each population tested billions of mutations. A citrate-using (Cit+) variant finally evolved in one population by 31,500 generations, causing an increase in population size and diversity. The long-delayed and unique evolution of this function might indicate the involvement of some extremely rare mutation. Alternately, it may involve an ordinary mutation, but one whose physical occurrence or phenotypic expression is contingent on prior mutations in that population. We tested these hypotheses in experiments that "replayed" evolution from different points in that population's history. We observed no Cit+ mutants among 8.4 x 10(12) ancestral cells, nor among 9 x 10(12) cells from 60 clones sampled in the first 15,000 generations. However, we observed a significantly greater tendency for later clones to evolve Cit+, indicating that some potentiating mutation arose by 20,000 generations. This potentiating change increased the mutation rate to Cit+ but did not cause generalized hypermutability. Thus, the evolution of this phenotype was contingent on the particular history of that population. More generally, we suggest that historical contingency is especially important when it facilitates the evolution of key innovations that are not easily evolved by gradual, cumulative selection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sexual selection and speciation.

              The power of sexual selection to drive changes in mate recognition traits gives it the potential to be a potent force in speciation. Much of the evidence to support this possibility comes from comparative studies that examine differences in the number of species between clades that apparently differ in the intensity of sexual selection. We argue that more detailed studies are needed, examining extinction rates and other sources of variation in species richness. Typically, investigations of extant natural populations have been too indirect to convincingly conclude speciation by sexual selection. Recent empirical work, however, is beginning to take a more direct approach and rule out confounding variables.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Trends in Ecology & Evolution
                Trends in Ecology & Evolution
                Elsevier BV
                01695347
                October 2022
                October 2022
                Article
                10.1016/j.tree.2022.09.005
                36220711
                2ddcaf6c-db21-429e-9701-a88bff31ec1a
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article