0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Deep convolutional neural network and emotional learning based breast cancer detection using digital mammography

      , , , ,
      Computers in Biology and Medicine
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: not found
          • Article: not found

          A survey of the recent architectures of deep convolutional neural networks

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Deep Learning to Improve Breast Cancer Detection on Screening Mammography

            The rapid development of deep learning, a family of machine learning techniques, has spurred much interest in its application to medical imaging problems. Here, we develop a deep learning algorithm that can accurately detect breast cancer on screening mammograms using an “end-to-end” training approach that efficiently leverages training datasets with either complete clinical annotation or only the cancer status (label) of the whole image. In this approach, lesion annotations are required only in the initial training stage, and subsequent stages require only image-level labels, eliminating the reliance on rarely available lesion annotations. Our all convolutional network method for classifying screening mammograms attained excellent performance in comparison with previous methods. On an independent test set of digitized film mammograms from the Digital Database for Screening Mammography (CBIS-DDSM), the best single model achieved a per-image AUC of 0.88, and four-model averaging improved the AUC to 0.91 (sensitivity: 86.1%, specificity: 80.1%). On an independent test set of full-field digital mammography (FFDM) images from the INbreast database, the best single model achieved a per-image AUC of 0.95, and four-model averaging improved the AUC to 0.98 (sensitivity: 86.7%, specificity: 96.1%). We also demonstrate that a whole image classifier trained using our end-to-end approach on the CBIS-DDSM digitized film mammograms can be transferred to INbreast FFDM images using only a subset of the INbreast data for fine-tuning and without further reliance on the availability of lesion annotations. These findings show that automatic deep learning methods can be readily trained to attain high accuracy on heterogeneous mammography platforms, and hold tremendous promise for improving clinical tools to reduce false positive and false negative screening mammography results. Code and model available at: https://github.com/lishen/end2end-all-conv.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Detection of Breast Cancer with Mammography: Effect of an Artificial Intelligence Support System

              Purpose To compare breast cancer detection performance of radiologists reading mammographic examinations unaided versus supported by an artificial intelligence (AI) system. Materials and Methods An enriched retrospective, fully crossed, multireader, multicase, HIPAA-compliant study was performed. Screening digital mammographic examinations from 240 women (median age, 62 years; range, 39-89 years) performed between 2013 and 2017 were included. The 240 examinations (100 showing cancers, 40 leading to false-positive recalls, 100 normal) were interpreted by 14 Mammography Quality Standards Act-qualified radiologists, once with and once without AI support. The readers provided a Breast Imaging Reporting and Data System score and probability of malignancy. AI support provided radiologists with interactive decision support (clicking on a breast region yields a local cancer likelihood score), traditional lesion markers for computer-detected abnormalities, and an examination-based cancer likelihood score. The area under the receiver operating characteristic curve (AUC), specificity and sensitivity, and reading time were compared between conditions by using mixed-models analysis dof variance and generalized linear models for multiple repeated measurements. Results On average, the AUC was higher with AI support than with unaided reading (0.89 vs 0.87, respectively; P = .002). Sensitivity increased with AI support (86% [86 of 100] vs 83% [83 of 100]; P = .046), whereas specificity trended toward improvement (79% [111 of 140]) vs 77% [108 of 140]; P = .06). Reading time per case was similar (unaided, 146 seconds; supported by AI, 149 seconds; P = .15). The AUC with the AI system alone was similar to the average AUC of the radiologists (0.89 vs 0.87). Conclusion Radiologists improved their cancer detection at mammography when using an artificial intelligence system for support, without requiring additional reading time. Published under a CC BY 4.0 license. See also the editorial by Bahl in this issue.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Computers in Biology and Medicine
                Computers in Biology and Medicine
                Elsevier BV
                00104825
                May 2021
                May 2021
                : 132
                : 104318
                Article
                10.1016/j.compbiomed.2021.104318
                33744608
                2dc9fe40-327c-4603-aff3-a8844554e7eb
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article