7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      z-GAL: A NOEMA spectroscopic redshift survey of bright Herschelgalaxies : II. Dust properties

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present the dust properties of 125 bright Herschelgalaxies selected from the z-GAL NOEMA spectroscopic redshift survey. All the galaxies have precise spectroscopic redshifts in the range 1.3 < z< 5.4. The large instantaneous bandwidth of NOEMA provides an exquisite sampling of the underlying dust continuum emission at 2 and 3 mm in the observed frame, with flux densities in at least four sidebands for each source. Together with the available Herschel250, 350, and 500 μm and SCUBA-2 850 μm flux densities, the spectral energy distribution (SED) of each source can be analyzed from the far-infrared to the millimeter, with a fine sampling of the Rayleigh-Jeans tail. This wealth of data provides a solid basis to derive robust dust properties, in particular the dust emissivity index ( β) and the dust temperature ( T dust). In order to demonstrate our ability to constrain the dust properties, we used a flux-generated mock catalog and analyzed the results under the assumption of an optically thin and optically thick modified black body emission. The robustness of the SED sampling for the z-GAL sources is highlighted by the mock analysis that showed high accuracy in estimating the continuum dust properties. These findings provided the basis for our detailed analysis of the z-GAL continuum data. We report a range of dust emissivities with β ∼ 1.5 − 3 estimated up to high precision with relative uncertainties that vary in the range 7%−15%, and an average of 2.2 ± 0.3. We find dust temperatures varying from 20 to 50 K with an average of T dust ∼ 30 K for the optically thin case and T dust ∼ 38 K in the optically thick case. For all the sources, we estimate the dust masses and apparent infrared luminosities (based on the optically thin approach). An inverse correlation is found between T dustand βwith βT dust −0.69, which is similar to what is seen in the local Universe. Finally, we report an increasing trend in the dust temperature as a function of redshift at a rate of 6.5 ± 0.5 K/ zfor this 500 μm-selected sample. Based on this study, future prospects are outlined to further explore the evolution of dust temperature across cosmic time.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: not found
          • Article: not found

          emcee: The MCMC Hammer

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Global Schmidt Law in Star‐forming Galaxies

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34

              Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.
                Bookmark

                Author and article information

                Journal
                Astronomy & Astrophysics
                A&A
                EDP Sciences
                0004-6361
                1432-0746
                October 2023
                October 04 2023
                October 2023
                : 678
                : A27
                Article
                10.1051/0004-6361/202346804
                2d7e9710-660c-4aaa-b0f8-23be749e23cb
                © 2023

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article